Появление ржавчины. Текущее положение дел

О ржавчине рассказывается на многих сайтах. Есть много фотографий, но только изделий или, в крайнем случае, макроструктура. Как выглядит ржавчина под микроскопом?

Ржавчиной , как правило, называют продукт коррозии только железа и его сплавов, таких, как сталь или чугун, хотя многие другие металлы тоже подвергаются коррозии.
Все знают красный налет на поверхности металлических материалов или изделий, которые находятся под воздействием влаги или некоторых реактивов. Этот налет - окислы, которые образуются при взаимодействии железа с кислородом. Химическая формула ржавчины Fe 2 O 3  nH 2 O (гидратированный оксид трехвалентного железа), а также метагидрооксид (FeO(OH), Fe(OH) 3). На рис.1 показаны красные окислы железа - Fe 2 O 3 и Fe 3 O 4 .

Рисунок 1. Красные окислы железа: а - Fe 2 O 3 ; б - Fe 3 O 4 .

Если поверхность железных изделий не защищать, то в конце концов изделие рассыплется в порошок. Красный окисел не пассивирует поверхность, т.е. не защищает ее от дальнейшего разрушения. (Кстати, концентрированная серная кислота пассивирует поверхность. При взаимодействии железа с кислотой на поверхности железа образуется сернокислое железо и окисление железа прекращается).
Окисление возможно и на воздухе, т.к. он в наших условиях содержит некоторое количество влаги. На рис. 2 показана ржавчина на изломе пластинки быстрорежущей стали Р6М5.

Рисунок 2. Излом стали Р6М5 ; окисление в комнатных условиях; светлопольное изображение

Ржавчина образуется и при коррозии металла в почве (рис. 3 и 4). На рис. 3 показан фрагмент детали сельхозтехники, пролежавшей несколько лет в поле. Это макроструктура, которая показывает расположение окисленных участков на поверхности. Более красивую и интересную картину дает микроструктура (рис. 4). Видны кристаллы красной ржавчины (рис. 4 а) и осадки другого типа (рис. 4 б), состав которых не определялся.

Рисунок 3. Фрагмент детали сельхозтехники; почвенная коррозия.

а б

Рисунок 4. Ржавчина и осадки на изломе детали; темнопольное изображение

Поскольку влага присутствует и в воздухе, окисляются и шлифы металлов и сплавов, хранящиеся не в специальных условиях. Окисление их усиливается еще и потому, что они протравлены. Нетравленные шлифы хранятся куда лучше. На рис. 5 показано окисление протравленных шлифов стали ШХ15. Ржавчина в основном располагается на матрице (мартенсит), карбиды (белая фаза) видны хорошо (рис. 5а). В структуре зернистого перлита (рис. 5 б) окисляется феррит, на изображении он имеет голубой и зеленый цвет; ржавчина сосредоточена в виде отельных пятен (до поры, пока не окислится весь образец).

а б

Рисунок 5. Окисление шлифов стали ШХ15 после травления и длительного хранения в комнатных условиях: а - закалка и отпуск, равномерное окисление поверхности; б - зернистый перлит, формирование островков окисной пленки.

На рис. 6а показано крупное скопление окислов. Некоторые из них имеют красный цвет, это ржавчина, другие - светлый (рис. 6 б). Состав их не анализировали; также это может быть и пыль, поскольку шлиф находился на открытом воздухе.

Рисунок 7. Сплошной окисный слой на шлифе

Все, что содержит железо, может ржаветь. В том числе и метеориты (рис. 8).

Рисунок 8. Окислы железа на метеоритах

Материал из Википедии - свободной энциклопедии

Ржа́вчина является общим термином для определения оксидов железа . В разговорной речи этот термин применяется к красным окислам, образующимся в результате реакции железа с кислородом в присутствии воды или влажного воздуха. Есть и другие формы ржавчины, например, продукт, образующийся в результате реакции железа с хлором при отсутствии кислорода. Такое вещество образуется, в частности, в арматуре , используемой в подводных бетонных столбах, и называют его зелёной ржавчиной . Несколько видов коррозии различимы визуально или с помощью спектроскопии , они формируются при разных внешних условиях. Ржавчина состоит из гидратированного оксида железа(III) Fe 2 O 3 ·nH 2 O и метагидроксида железа (FeO(OH), Fe(OH) 3). При наличии кислорода и воды и достаточном времени любая масса железа в конечном итоге преобразуется полностью в ржавчину и разрушается. Поверхность ржавчины не создаёт защиту для нижележащего железа, в отличие от образования патины на медной поверхности.

Ржавчиной как правило называют продукт коррозии только железа и его сплавов, таких как сталь. Многие другие металлы тоже подвергаются коррозии, но именно оксиды железа обычно называют ржавчиной.

Химические реакции

Причины ржавления

Если железо, содержащее какие-либо добавки и примеси (например, углерод), находится в контакте с водой, кислородом или другим сильным окислителем и/или кислотой, то оно начинает ржаветь. Если при этом присутствует соль, например, имеется контакт с солёной водой, коррозия происходит быстрее в результате электрохимических реакций. Чистое железо относительно устойчиво к воздействию чистой воды и сухого кислорода. Как и у других металлов, например, у алюминия, плотно приставшее оксидное покрытие на железе (слой пассивации) защищает основную массу железа от дальнейшего окисления. Превращение же пассивирующего слоя оксида железа в ржавчину является результатом комбинированного действия двух агентов, как правило, кислорода и воды. Другими разрушающими факторами являются диоксид серы и углекислый газ в воде. В этих агрессивных условиях образуются различные виды гидроксида железа. В отличие от оксидов железа, гидроксиды не защищают основную массу металла. Поскольку гидроксид формируется и отслаивается от поверхности, воздействию подвергается следующий слой железа, и процесс коррозии продолжается до тех пор, пока всё железо не будет уничтожено, или в системе закончится весь кислород, вода, диоксид углерода или диоксид серы.

Происходящие реакции

Ржавление железа - это электрохимический процесс, который начинается с переноса электронов от железа к кислороду. Скорость коррозии зависит от количества имеющейся воды, и ускоряется электролитами , о чём свидетельствуют последствия применения дорожной соли на коррозию автомобилей. Ключевой реакцией является восстановление кислорода:

O 2 + 4 e - + 2 H 2 O → 4 OH -

Поскольку при этом образуются ионы гидроксидов , этот процесс сильно зависит от присутствия кислоты. Действительно, коррозия большинства металлов кислородом ускоряется при понижении . Обеспечение электронов для вышеприведённой реакции происходит при окисления железа, которое может быть описано следующим образом:

Fe → Fe 2+ + 2 e −

Следующая окислительно-восстановительная реакция происходит в присутствии воды и имеет решающее значение для формирования ржавчины:

4 Fe 2+ + O 2 → 4 Fe 3+ + 2 O 2−

Кроме того, следующие многоступенчатые кислотно-щелочные реакции влияют на ход формирования ржавчины:

Fe 2+ + 2 H 2 O ⇌ Fe(OH) 2 + 2 H + Fe 3+ + 3 H 2 O ⇌ Fe(OH) 3 + 3 H +

что приводит к следующим реакциям поддержания баланса дегидратации:

Fe(OH) 2 ⇌ FeO + H 2 O Fe(OH) 3 ⇌ FeO(OH) + H 2 O 2 FeO(OH) ⇌ Fe 2 O 3 + H 2 O

Из приведённых выше уравнений видно, что формирование продуктов коррозии обусловлено наличием воды и кислорода. С ограничением растворённого кислорода на передний план выдвигаются железо(II)-содержащие материалы, в том числе FeO и чёрный магнит (Fe 3 O 4). Высокая концентрация кислорода благоприятна для материалов с трёхвалентным железом, с номинальной формулой Fe(OH) 3-x O x/2 . Характер коррозии меняется со временем, отражая медленные скорости реакций твёрдых тел.

Кроме того, эти сложные процессы зависят от присутствия других ионов, таких как Ca 2+ , которые служат в качестве электролита, и таким образом, ускоряют образование ржавчины, или в сочетании с гидроксидами и оксидами железа образуют различные осадки вида Ca-Fe-O-OH.

Более того, цвет ржавчины можно использовать для проверки наличия ионов Fe2+, которые меняют цвет ржавчины с жёлтого на синий.

Предотвращение ржавления

Ржавчина является проницаемой для воздуха и воды, поэтому внутрилежащее железо продолжает разъедаться. Предотвращение ржавчины, следовательно, требует покрытия, которое исключает образование ржавчины. На поверхности нержавеющей стали формируется пассивирующий слой оксида хрома(III) . Подобное проявление пассивации происходит с магнием , титаном , цинком , оксидом цинка , алюминием , полианилином и другими электропроводящими полимерами.

Гальванизация

Хорошим подходом к предотвращению ржавчины является метод гальванизации , который обычно заключается в нанесении на защищаемый объект слоя цинка либо методом горячего цинкования , либо методом гальванотехники . Цинк традиционно используется, потому что он достаточно дёшев, обладает хорошей адгезией к стали и обеспечивает катодную защиту на стальную поверхность в случае повреждения цинкового слоя. В более агрессивных средах (таких, как солёная вода), предпочтительнее кадмий . Гальванизация часто не попадает на швы, отверстия и стыки, через которые наносилось покрытие. В этих случаях покрытие обеспечивает катодную защиту металла, где оно выступает в роли гальванического анода, на который прежде всего и воздействует коррозия. В более современные покрытия добавляют алюминий, новый материал называется цинк-алюм . Алюминий в покрытии мигрирует, покрывая царапины и, таким образом, обеспечивая более длительную защиту. Этот метод основан на применении оксидов алюминия и цинка, защищающих царапины на поверхности, в отличие от процесса оксидизации, как в случае применения гальванического анода. В некоторых случаях при очень агрессивных средах или длительных сроках эксплуатации применяются одновременно и гальванизация цинком, и другие защитные покрытия , чтобы обеспечить надёжную защиту от коррозии.

Катодная защита

Катодная защита является методом, используемым для предотвращения коррозии в скрытых под землёй или под водой структурах путём подачи электрического заряда, который подавляет электрохимические реакции. Если её правильно применять, коррозия может быть остановлена полностью. В своей простейшей форме это достигается путём соединения защищаемого объекта с протекторным анодом, в результате чего на поверхности железа или стали происходит только катодный процесс. Протекторный анод должен быть сделан из металла с более отрицательным электродным потенциалом , чем железо или сталь, обычно это цинк, алюминий или магний.

Лакокрасочные и другие защитные покрытия

От ржавчины можно предохранять с помощью лакокрасочных и других защитных покрытий, которые изолируют железо из окружающей среды. История красок для нанесения на ржавчину насчитывает 50 лет, когда в Англии была изобретена краска Hammerite . Большие поверхности, поделённые на секции, как например, корпуса судов и современных автомобилей, часто покрывают продуктами на основе воска. Такие средства обработки содержат также ингибиторы от коррозии. Покрытие стальной арматуры бетоном (железобетон) обеспечивает некоторую защиту стали в среде с высоким рН. Однако коррозия стали в бетоне всё ещё является проблемой.

Покрытие слоем металла

  • Оцинковка (оцинкованное железо/сталь): железо или сталь покрываются слоем цинка. Может использоваться метод горячего цинкования или метод цинкового дутья.
  • Лужение : мягкая листовая сталь покрывается слоем олова.
  • Хромирование : тонкий слой хрома наносится электролитическим способом на сталь, обеспечивая как защиту от коррозии, так и яркий, полированный внешний вид. Часто используется в блестящих компонентах велосипедов, мотоциклов и автомобилей.

Воронение

Ингибиторы

См. также

Напишите отзыв о статье "Ржавчина"

Примечания

Ссылки

  • Сайт, посвященный изучению экономических последствий коррозии
  • Анализ коррозии
  • Статьи по коррозии
  • Что такое ржавчина

Отрывок, характеризующий Ржавчина

– Отчего слишком?.. Ну, как вы думаете, как вы чувствуете по душе, по всей душе, буду я жив? Как вам кажется?
– Я уверена, я уверена! – почти вскрикнула Наташа, страстным движением взяв его за обе руки.
Он помолчал.
– Как бы хорошо! – И, взяв ее руку, он поцеловал ее.
Наташа была счастлива и взволнована; и тотчас же она вспомнила, что этого нельзя, что ему нужно спокойствие.
– Однако вы не спали, – сказала она, подавляя свою радость. – Постарайтесь заснуть… пожалуйста.
Он выпустил, пожав ее, ее руку, она перешла к свече и опять села в прежнее положение. Два раза она оглянулась на него, глаза его светились ей навстречу. Она задала себе урок на чулке и сказала себе, что до тех пор она не оглянется, пока не кончит его.
Действительно, скоро после этого он закрыл глаза и заснул. Он спал недолго и вдруг в холодном поту тревожно проснулся.
Засыпая, он думал все о том же, о чем он думал все ото время, – о жизни и смерти. И больше о смерти. Он чувствовал себя ближе к ней.
«Любовь? Что такое любовь? – думал он. – Любовь мешает смерти. Любовь есть жизнь. Все, все, что я понимаю, я понимаю только потому, что люблю. Все есть, все существует только потому, что я люблю. Все связано одною ею. Любовь есть бог, и умереть – значит мне, частице любви, вернуться к общему и вечному источнику». Мысли эти показались ему утешительны. Но это были только мысли. Чего то недоставало в них, что то было односторонне личное, умственное – не было очевидности. И было то же беспокойство и неясность. Он заснул.
Он видел во сне, что он лежит в той же комнате, в которой он лежал в действительности, но что он не ранен, а здоров. Много разных лиц, ничтожных, равнодушных, являются перед князем Андреем. Он говорит с ними, спорит о чем то ненужном. Они сбираются ехать куда то. Князь Андрей смутно припоминает, что все это ничтожно и что у него есть другие, важнейшие заботы, но продолжает говорить, удивляя их, какие то пустые, остроумные слова. Понемногу, незаметно все эти лица начинают исчезать, и все заменяется одним вопросом о затворенной двери. Он встает и идет к двери, чтобы задвинуть задвижку и запереть ее. Оттого, что он успеет или не успеет запереть ее, зависит все. Он идет, спешит, ноги его не двигаются, и он знает, что не успеет запереть дверь, но все таки болезненно напрягает все свои силы. И мучительный страх охватывает его. И этот страх есть страх смерти: за дверью стоит оно. Но в то же время как он бессильно неловко подползает к двери, это что то ужасное, с другой стороны уже, надавливая, ломится в нее. Что то не человеческое – смерть – ломится в дверь, и надо удержать ее. Он ухватывается за дверь, напрягает последние усилия – запереть уже нельзя – хоть удержать ее; но силы его слабы, неловки, и, надавливаемая ужасным, дверь отворяется и опять затворяется.
Еще раз оно надавило оттуда. Последние, сверхъестественные усилия тщетны, и обе половинки отворились беззвучно. Оно вошло, и оно есть смерть. И князь Андрей умер.
Но в то же мгновение, как он умер, князь Андрей вспомнил, что он спит, и в то же мгновение, как он умер, он, сделав над собою усилие, проснулся.
«Да, это была смерть. Я умер – я проснулся. Да, смерть – пробуждение!» – вдруг просветлело в его душе, и завеса, скрывавшая до сих пор неведомое, была приподнята перед его душевным взором. Он почувствовал как бы освобождение прежде связанной в нем силы и ту странную легкость, которая с тех пор не оставляла его.
Когда он, очнувшись в холодном поту, зашевелился на диване, Наташа подошла к нему и спросила, что с ним. Он не ответил ей и, не понимая ее, посмотрел на нее странным взглядом.
Это то было то, что случилось с ним за два дня до приезда княжны Марьи. С этого же дня, как говорил доктор, изнурительная лихорадка приняла дурной характер, но Наташа не интересовалась тем, что говорил доктор: она видела эти страшные, более для нее несомненные, нравственные признаки.
С этого дня началось для князя Андрея вместе с пробуждением от сна – пробуждение от жизни. И относительно продолжительности жизни оно не казалось ему более медленно, чем пробуждение от сна относительно продолжительности сновидения.

Ничего не было страшного и резкого в этом, относительно медленном, пробуждении.
Последние дни и часы его прошли обыкновенно и просто. И княжна Марья и Наташа, не отходившие от него, чувствовали это. Они не плакали, не содрогались и последнее время, сами чувствуя это, ходили уже не за ним (его уже не было, он ушел от них), а за самым близким воспоминанием о нем – за его телом. Чувства обеих были так сильны, что на них не действовала внешняя, страшная сторона смерти, и они не находили нужным растравлять свое горе. Они не плакали ни при нем, ни без него, но и никогда не говорили про него между собой. Они чувствовали, что не могли выразить словами того, что они понимали.
Они обе видели, как он глубже и глубже, медленно и спокойно, опускался от них куда то туда, и обе знали, что это так должно быть и что это хорошо.
Его исповедовали, причастили; все приходили к нему прощаться. Когда ему привели сына, он приложил к нему свои губы и отвернулся, не потому, чтобы ему было тяжело или жалко (княжна Марья и Наташа понимали это), но только потому, что он полагал, что это все, что от него требовали; но когда ему сказали, чтобы он благословил его, он исполнил требуемое и оглянулся, как будто спрашивая, не нужно ли еще что нибудь сделать.
Когда происходили последние содрогания тела, оставляемого духом, княжна Марья и Наташа были тут.
– Кончилось?! – сказала княжна Марья, после того как тело его уже несколько минут неподвижно, холодея, лежало перед ними. Наташа подошла, взглянула в мертвые глаза и поспешила закрыть их. Она закрыла их и не поцеловала их, а приложилась к тому, что было ближайшим воспоминанием о нем.
«Куда он ушел? Где он теперь?..»

Когда одетое, обмытое тело лежало в гробу на столе, все подходили к нему прощаться, и все плакали.
Николушка плакал от страдальческого недоумения, разрывавшего его сердце. Графиня и Соня плакали от жалости к Наташе и о том, что его нет больше. Старый граф плакал о том, что скоро, он чувствовал, и ему предстояло сделать тот же страшный шаг.
Наташа и княжна Марья плакали тоже теперь, но они плакали не от своего личного горя; они плакали от благоговейного умиления, охватившего их души перед сознанием простого и торжественного таинства смерти, совершившегося перед ними.

Для человеческого ума недоступна совокупность причин явлений. Но потребность отыскивать причины вложена в душу человека. И человеческий ум, не вникнувши в бесчисленность и сложность условий явлений, из которых каждое отдельно может представляться причиною, хватается за первое, самое понятное сближение и говорит: вот причина. В исторических событиях (где предметом наблюдения суть действия людей) самым первобытным сближением представляется воля богов, потом воля тех людей, которые стоят на самом видном историческом месте, – исторических героев. Но стоит только вникнуть в сущность каждого исторического события, то есть в деятельность всей массы людей, участвовавших в событии, чтобы убедиться, что воля исторического героя не только не руководит действиями масс, но сама постоянно руководима. Казалось бы, все равно понимать значение исторического события так или иначе. Но между человеком, который говорит, что народы Запада пошли на Восток, потому что Наполеон захотел этого, и человеком, который говорит, что это совершилось, потому что должно было совершиться, существует то же различие, которое существовало между людьми, утверждавшими, что земля стоит твердо и планеты движутся вокруг нее, и теми, которые говорили, что они не знают, на чем держится земля, но знают, что есть законы, управляющие движением и ее, и других планет. Причин исторического события – нет и не может быть, кроме единственной причины всех причин. Но есть законы, управляющие событиями, отчасти неизвестные, отчасти нащупываемые нами. Открытие этих законов возможно только тогда, когда мы вполне отрешимся от отыскиванья причин в воле одного человека, точно так же, как открытие законов движения планет стало возможно только тогда, когда люди отрешились от представления утвержденности земли.

После Бородинского сражения, занятия неприятелем Москвы и сожжения ее, важнейшим эпизодом войны 1812 года историки признают движение русской армии с Рязанской на Калужскую дорогу и к Тарутинскому лагерю – так называемый фланговый марш за Красной Пахрой. Историки приписывают славу этого гениального подвига различным лицам и спорят о том, кому, собственно, она принадлежит. Даже иностранные, даже французские историки признают гениальность русских полководцев, говоря об этом фланговом марше. Но почему военные писатели, а за ними и все, полагают, что этот фланговый марш есть весьма глубокомысленное изобретение какого нибудь одного лица, спасшее Россию и погубившее Наполеона, – весьма трудно понять. Во первых, трудно понять, в чем состоит глубокомыслие и гениальность этого движения; ибо для того, чтобы догадаться, что самое лучшее положение армии (когда ее не атакуют) находиться там, где больше продовольствия, – не нужно большого умственного напряжения. И каждый, даже глупый тринадцатилетний мальчик, без труда мог догадаться, что в 1812 году самое выгодное положение армии, после отступления от Москвы, было на Калужской дороге. Итак, нельзя понять, во первых, какими умозаключениями доходят историки до того, чтобы видеть что то глубокомысленное в этом маневре. Во вторых, еще труднее понять, в чем именно историки видят спасительность этого маневра для русских и пагубность его для французов; ибо фланговый марш этот, при других, предшествующих, сопутствовавших и последовавших обстоятельствах, мог быть пагубным для русского и спасительным для французского войска. Если с того времени, как совершилось это движение, положение русского войска стало улучшаться, то из этого никак не следует, чтобы это движение было тому причиною.
Этот фланговый марш не только не мог бы принести какие нибудь выгоды, но мог бы погубить русскую армию, ежели бы при том не было совпадения других условий. Что бы было, если бы не сгорела Москва? Если бы Мюрат не потерял из виду русских? Если бы Наполеон не находился в бездействии? Если бы под Красной Пахрой русская армия, по совету Бенигсена и Барклая, дала бы сражение? Что бы было, если бы французы атаковали русских, когда они шли за Пахрой? Что бы было, если бы впоследствии Наполеон, подойдя к Тарутину, атаковал бы русских хотя бы с одной десятой долей той энергии, с которой он атаковал в Смоленске? Что бы было, если бы французы пошли на Петербург?.. При всех этих предположениях спасительность флангового марша могла перейти в пагубность.
В третьих, и самое непонятное, состоит в том, что люди, изучающие историю, умышленно не хотят видеть того, что фланговый марш нельзя приписывать никакому одному человеку, что никто никогда его не предвидел, что маневр этот, точно так же как и отступление в Филях, в настоящем никогда никому не представлялся в его цельности, а шаг за шагом, событие за событием, мгновение за мгновением вытекал из бесчисленного количества самых разнообразных условий, и только тогда представился во всей своей цельности, когда он совершился и стал прошедшим.
На совете в Филях у русского начальства преобладающею мыслью было само собой разумевшееся отступление по прямому направлению назад, то есть по Нижегородской дороге. Доказательствами тому служит то, что большинство голосов на совете было подано в этом смысле, и, главное, известный разговор после совета главнокомандующего с Ланским, заведовавшим провиантскою частью. Ланской донес главнокомандующему, что продовольствие для армии собрано преимущественно по Оке, в Тульской и Калужской губерниях и что в случае отступления на Нижний запасы провианта будут отделены от армии большою рекою Окой, через которую перевоз в первозимье бывает невозможен. Это был первый признак необходимости уклонения от прежде представлявшегося самым естественным прямого направления на Нижний. Армия подержалась южнее, по Рязанской дороге, и ближе к запасам. Впоследствии бездействие французов, потерявших даже из виду русскую армию, заботы о защите Тульского завода и, главное, выгоды приближения к своим запасам заставили армию отклониться еще южнее, на Тульскую дорогу. Перейдя отчаянным движением за Пахрой на Тульскую дорогу, военачальники русской армии думали оставаться у Подольска, и не было мысли о Тарутинской позиции; но бесчисленное количество обстоятельств и появление опять французских войск, прежде потерявших из виду русских, и проекты сражения, и, главное, обилие провианта в Калуге заставили нашу армию еще более отклониться к югу и перейти в середину путей своего продовольствия, с Тульской на Калужскую дорогу, к Тарутину. Точно так же, как нельзя отвечать на тот вопрос, когда оставлена была Москва, нельзя отвечать и на то, когда именно и кем решено было перейти к Тарутину. Только тогда, когда войска пришли уже к Тарутину вследствие бесчисленных дифференциальных сил, тогда только стали люди уверять себя, что они этого хотели и давно предвидели.

Сегодня с образованием ржавчины на металлических поверхностях сталкиваются многие люди. Она образуется под воздействием окружающей среды. Процесс образования ржавого налета может иметь разную продолжительность. Она зависит от того, в каких условиях окружающей среды находится тот или иной металлический предмет.

С химической точки зрения ржавчина представляет собой оксид железа. Он образуется путем влияния кислорода на железо в условиях высокой влажности. С физической точки зрения данное образование на металлической поверхности представляет собой налет насыщенного оранжевого цвета, который обладает достаточно хрупкой консистенцией. Цвет ржавчины при некоторых условиях может быть и зеленым.

На сегодняшний день встречается несколько видов ржавчины. Они зависят от того, каким образом образуется налет.

К видам данного типа коррозии относятся:

  • Красные окислы. Они образуются под воздействием кислорода на железо под воздействием воды.
  • Зеленая ржавчина. Она образуется под воздействием на железо хлора без участия в процессе кислорода. В современно мире не редко встречается такой тип ржавчины. Он известен многим благодаря налету, который образуется на арматуре, которая применяется для сооружения бетонных морских столбов.

Существует еще несколько видов и форм ржавчины. Все он отличаются визуально. В некоторых случаях для определения типа коррозии используется метод спектроскопии. Образование коррозии на железе практически неизбежно. Постепенно любое количество данного металла под воздействием кислорода и воды превращается в груду, которая полностью покрыта налетом насыщенного оранжевого цвета. В последующем это может привести к разрушению железа. Под воздействием ржавчины данный металл начинает приобретать не плотную структуру, что приводит к тому, что ржавчина его разъедает и уничтожает.

Ржавчина принадлежит к одному из продуктов такого процесса, как коррозия. В результате него повреждаются различные виды металлов. Коррозии подвержены металлы, которые образуются из сплавов железа. Сталь в некоторых случаях тоже подвергается данному процессу, если она не относится к разряду нержавеющих. Однако ржавчиной называется именно процесс образования оксида железа.

Причиной ржавления железа чаще всего является наличие воды, доступа к кислороду и к другим сильным окислителям. Под их воздействием железо начинает покрываться ржавым налетом. Для того чтобы ускорить этот процесс достаточно только добавить соли. В результате электрохимической реакции железо начнет ржаветь сильнее и быстрее произойдет разрушение предмета, который сделан из данного металла.

В некоторых случаях железо начинает покрываться ржавчиной, если оно находится в агрессивной среде. Такой средой может быть раствор, состоящий из воды диоксида серы и углекислого газа.

Таблица. Основные количественные показатели коррозии и коррозионной стойкости.

Вид коррозии Основные количественные показатели коррозии и коррозионной стойкости
Коррозионный эффект (интегральный показатель коррозии) Скоростной (дифференциальный) показатель коррозии Показатель коррозионной стойкости
Сплошная коррозия Линейная скорость коррозии Время проникновения коррозии на допустимую (заданную) глубину*
Потеря массы на единицу площади Скорость убыли массы Время до уменьшения массы на допустимую (заданную) величину*
Коррозия пятнами Степень поражения поверхности
Питтинговая коррозия Максимальная глубина питтинга Максимальная скорость проникновения питтинга Минимальное время проникновения питтингов на допустимую (заданную) глубину*
Максимальный размер поперечника питтинга в устье Минимальное время достижения допустимого (заданного) размера поперечника питтинга в устье*
Степень поражения поверхности питтингами Время достижения допустимой (заданной) степени поражения*
Межкристаллитная коррозия Глубина проникновения коррозии Время проникновения на допустимую (заданную) глубину*
Снижение механических свойств (относительного удлинения, сужения, ударной вязкости, временного сопротивления разрыву) Время снижения механических свойств до допустимого (заданного) уровня*
Коррозионное растрескивание Глубина (длина) трещин Скорость роста трещин Время до появления первой трещины**
Снижение механических свойств (относительного удлинения, сужения) Время до разрушения образца** Уровень безопасных напряжений** (условный предел длительной коррозионной прочности**) Пороговый коэффициент интенсивности напряжений при коррозионном растрескивании**
Коррозионная усталость Глубина (длина) трещин Скорость роста трещин Количество циклов до разрушения образца** Условный предел коррозионной усталости** Пороговый коэффициент интенсивности напряжений при коррозионной усталости**
Расслаивающая коррозия Степень поражения поверхности отслоениями Суммарная длина торцов с трещинами -
Глубина проникновения коррозии Скорость проникновения коррозии

В современном мире производится большое количество изделий из железа. Они представлены и товарами промышленного назначения, и продукцией для использования в быту. Всегда хочется, чтобы они прослужили длительное время. Образование ржавчины не является полезным для предметов, сделанных из железа. Она приводит к их поломке и выходу из строя. Именно по этой причине следует знать о том, как убрать ржавчину, и как противостоять ее появлению.

Для того чтобы ржавчина не нанесла вред изделиям необходимо использовать специальные средства для того, чтобы на поверхности объектов из железа образовалась пленка, защищающая от проникновения в структуру металла воздуха и воды.

На сегодняшний день для защиты от ржавчины используются следующие методы:

  • Гальванизация. Данный метод применяется при производстве нержавейки. На металл наносится слой меди или цинка. Также в некоторых случаях применяется кадмий. Данные вещества образуют на поверхности не видную пленку, которая придает материалу железа плотность и высокую устойчивость к влаге и к кислороду.
  • Катодная защита. Данный метод применяется преимущественно для труб, которые прокладываются глубоко под землей. К ним проводится электрический заряд, который вызывает электрохимическую реакцию, предотвращаю появление ржавого налета на поверхности труб.
  • Нанесение на поверхность предметов из железа лакокрасочных изделий. Данный метод заключается в том, чтобы помимо декорирования изделия, защитить его от налета ржавчины. Краска тонким слоем покрывает металла и не дает возможности влаге и воздуху добраться до структуры железа.

Важно: Для того чтобы на окрашенном изделии не образовалось ржавчины необходимо следить, чтобы краска лежала ровным слоем и не имела никаких сколов. Иначе на поверхность металла будет влиять влажность и воздух.

В настоящее время имеются средства для удаления ржавчины. Их можно использовать, когда налет уже образовался. Они направлены на то, чтобы сделать структуру налета более хрупкой для получения возможности снятия его с поверхности металла.

Самым популярным средством устранения ржавого налета является преобразователь ржавчины. Он представляет собой раствор, который превращает налет в вещество, которое легко поддается устранению. Многие такие средства делают структуру ржавчины более однородной, что позволяет оставлять ее на поверхности металла для проведения лакокрасочных работ, если она не нарушает ее ровность.


Сегодня не редко встречается специальная краска по ржавчине. Она представлена на отечественном рынке большим количеством марок. Ее достоинством является то, что, она дает достаточно плотное покрытие. Она обладает тройным действием.

Что есть общего между ржавым гвоздем, проржавевшим мостом или прохудившимся железным забором? Отчего вообще ржавеют железные конструкции и изделия из железа? Что такое ржавчина как таковая? На эти вопросы постараемся дать ответы в нашей статье. Рассмотрим причины ржавления металлов и способы защиты от этого вредного для нас природного явления.

Причины ржавления

Все начинается с добычи металла. Не только железо, но и, например, и магний - добывают изначально в виде руды. Алюминиевая, марганцевая, железная, магниевая руды содержат в себе не чистые металлы, а их химические соединения: карбонаты, оксиды, сульфиды, гидроксиды.

Это химические соединения металлов с углеродом, кислородом, серой, водой и т. д. Чистых металлов в природе раз, два и обчелся — платина, золото, серебро — благородные металлы - они встречаются в форме металлов в свободном состоянии, и не сильно стремятся к образованию химических соединений.

Однако большинство металлов в природных условиях все же не являются свободными, и чтобы высвободить их из исходных соединений, необходимо руды плавить, восстанавливать таким образом чистые металлы.

Но выплавляя металлсодержащую руду, мы хоть и получаем металл в чистом виде, это все же состояние неустойчивое, далекое от естественного природного. По этой причине чистый металл в обычных условиях окружающей среды стремится вернуться назад в исходное состояние, то есть окислиться, а это и есть коррозия металла.

Таким образом, коррозия является естественным для металлов процессом разрушения, происходящим в условиях их взаимодействия с окружающей средой. В частности ржавление — это процесс образования гидроксида железа Fe(ОН)3, который протекает в присутствии воды.

Но на руку людям играет тот естественный факт, что окислительная реакция протекает в привычной нам атмосфере не особо стремительно, она идет с очень небольшой скоростью, поэтому мосты и самолеты не разрушаются мгновенно, а кастрюли не рассыпаются на глазах в рыжий порошок. К тому же коррозию в принципе можно замедлить, прибегнув к некоторым традиционным хитростям.

Например, нержавеющая сталь не ржавеет, хотя и состоит из железа, склонного к окислению, она тем не менее не покрывается рыжим гидроксидом. А дело здесь в том, что нержавеющая сталь — это не чистое железо, нержавеющая сталь — это сплав железа и другого металла, главным образом — хрома.

Кроме хрома в состав стали могут входить никель, молибден, титан, ниобий, сера, фосфор и т. д. Добавление в сплавы дополнительных элементов, ответственных за определенные свойства получаемых сплавов, называется легированием.

Пути защиты от коррозии

Как мы отметили выше, главным легирующим элементом, добавляемым к обычной стали для придания ей антикоррозийных свойств, является хром. Хром окисляется быстрее железа, то есть принимает удар на себя. На поверхности нержавеющей стали, таким образом, появляется сначала защитная пленка из оксида хрома, которая имеет темный цвет, и не такая рыхлая как обычная железная ржавчина.

Оксид хрома не пропускает через себя вредные для железа агрессивные ионы из окружающей среды, и металл оказывается защищенным от коррозии, словно прочным герметичным защитным костюмом. То есть оксидная пленка в данном случае несет защитную функцию.

Количество хрома в нержавеющей стали, как правило, не ниже 13%, чуть меньше в нержавеющей стали содержится никеля, и в гораздо меньших количествах имеются другие легирующие добавки.

Именно благодаря защитным пленкам, принимающим на себя воздействие окружающей среды первыми, многие металлы получаются стойкими к коррозии в различных средах. Например, ложка, тарелка или кастрюля, изготовленные из алюминия, никогда особо не блестят, они, если присмотреться, имеют белесый оттенок. Это как раз оксид алюминия, который образуется при контакте чистого алюминия с воздухом, и защищает затем металл от коррозии.

Пленка оксида возникает сама, и если зачистить алюминиевую кастрюлю наждачной бумагой, то через несколько секунд блеска поверхность снова станет белесой — алюминий на зачищенной поверхности вновь окислится под действием кислорода воздуха.

Поскольку пленка оксида алюминия образуется на нем сама, без особых технологических ухищрений, она называется пассивной пленкой. Такие металлы, на которых оксидная пленка образуется естественным образом, называются пассивирующимися. В частности алюминий — пассивирующийся металл.

Некоторые металлы принудительно переводят в пассивное состояние, например высший оксид железа — Fe2О3 способен защитить железо и его сплавы на воздухе при высоких температурах и даже в воде, чем не может похвастаться ни рыжий гидроксид, ни низшие оксиды все того же железа.

Есть в явлении пассивации и нюансы. Например, в крепкой серной кислоте мгновенно пассивированная сталь оказывается устойчивой к коррозии, а в слабом растворе серной кислоты тут же начнется коррозия.

Почему так происходит? Разгадка кажущегося парадокса состоит в том, что в крепкой кислоте на поверхности нержавеющей стали мгновенно образуется пассивирующая пленка, поскольку кислота большей концентрации обладает ярко выраженными окислительными свойствами.

В то же время слабая кислота не окисляет сталь достаточно быстро, и защитная пленка не формируется, начинается просто коррозия. В таких случаях, когда окисляющая среда не достаточно агрессивна, для достижения эффекта пассивации прибегают к специальным химическим добавкам (ингибиторам, замедлителям коррозии), помогающим образованию пассивной пленки на поверхности металла.

Так как не все металлы склонны к образованию на их поверхности пассивных пленок, даже принудительно, то добавление замедлителей в окисляющую среду попросту приводит к превентивному удержанию металла в условиях восстановления, когда окисление энергетически подавляется, то есть в условиях присутствия в агрессивной среде добавки оказывается энергетически невыгодным.

Есть и другой путь удержания металла в условиях восстановления, если нет возможности использовать ингибитор, - применить более активное покрытие: оцинкованное ведро не ржавеет, поскольку цинк покрытия корродирует при контакте с окружающей средой вперед железа, то есть принимает удар на себя, являясь более активным металлом, цинк охотнее вступает в химическую реакцию.

Днище корабля часто защищено аналогичным образом: к нему крепят кусок протектора, и тогда протектор разрушается, а днище остается невредимым.

Электрохимическая антикоррозийная защита подземных коммуникаций — также весьма распространенный путь борьбы с образованием на них ржавчины. Условия восстановления создаются подачей отрицательного катодного потенциала на металл, и в таком режиме процесс окисления металла уже не сможет протекать просто энергетически.

Кто-то может спросить, почему подверженные риску коррозии поверхности просто не красят краской, почему бы просто не покрывать каждый раз эмалью уязвимую к коррозии деталь? Для чего нужны именно разные способы?

Ответ прост. Эмаль может повредиться, например автомобильная краска может в неприметном месте отколоться, и кузов начнет постепенно но непрерывно ржаветь, поскольку сернистые соединения, соли, вода, кислород воздуха, - станут поступать к этому месту, и в итоге кузов будет разрушаться.

Чтобы такое развитие событий предотвратить, прибегают к дополнительной антикоррозийной обработке кузова. Автомобиль — это не эмалированная тарелка, которую можно в случае повреждения эмали просто выбросить, и купить новую..

Текущее положение дел

Несмотря на кажущуюся изученность и проработанность явления коррозии, несмотря на применяемые разносторонние методы защит, коррозия по сей день представляет определенную опасность. Трубопроводы разрушаются и это приводит к выбросам нефти и газа, падают самолеты, терпят крушение поезда. Природа более сложна, чем может показаться на первый взгляд, и человечеству предстоит изучить еще многие стороны коррозии.

Так, даже коррозиестойкие сплавы оказываются стойкими лишь в некоторых предсказуемых условиях, для работы в которых они изначально предназначены. Например, нержавеющие стали не терпят хлоридов, и поражаются ими — возникает язвенная, точечная и межкристальная коррозия.

Внешне без намека на ржавчину конструкция может внезапно рухнуть, если внутри образовались мелкие, но очень глубокие поражения. Микротрещины, пронизывающие толщу металла незаметны снаружи.

Даже сплав не подверженный коррозии может внезапно растрескаться, будучи под длительной механической нагрузкой — просто огромная трещина внезапно разрушит конструкцию. Такое уже случалось по всему миру с металлическими строительными конструкциями, механизмами, и даже с самолетами и вертолетами.

Андрей Повный

Словосочетания «коррозия металла» заключает в себе намного больше, чем название популярной рок-группы. Коррозия безвозвратно разрушает металл , превращая его в труху: из всего, произведенного в мире железа, 10% полностью разрушится в этот же год. Ситуация с российским металлом выглядит примерно так — весь металл, выплавленный за год в каждой шестой доменной печи нашей страны, становится ржавой трухой еще до конца года.

Выражение «обходится в копеечку» в отношении коррозии металла более чем верно — ежегодный ущерб, приносимый коррозией, составляет не менее 4% годового дохода любой развитой страны, а в России сумма ущерба исчисляется десятизначной цифрой. Так что же вызывает коррозийные процессы металлов и как с ними бороться?

Что такое коррозия металлов

Разрушение металлов в результате электрохимического (растворение во влагосодержащей воздушной или водной среде — электролите) или химического (образование соединений металлов с химическими агентами высокой агрессии) взаимодействия с внешней средой. Коррозийный процесс в металлах может развиться лишь в некоторых участках поверхности (местная коррозия), охватить всю поверхность (равномерная коррозия), или же разрушать металл по границам зерен (межкристаллитная коррозия).

Металл под воздействием кислорода и воды становится рыхлым светло-коричневым порошком, больше известным как ржавчина (Fе 2 O 3 ·H 2 О).

Химическая коррозия

Этот процесс происходит в средах, не являющихся проводниками электрического тока (сухие газы, органические жидкости — нефтепродукты, спирты и др.), причем интенсивность коррозии возрастает с повышением температуры — в результате на поверхности металлов образуется оксидная пленка.

Химической коррозии подвержены абсолютно все металлы — и черные, и цветные. Активные цветные металлы (например — алюминий) под воздействием коррозии покрываются оксидной пленкой, препятствующей глубокому окислению и защищающей металл. А такой мало активный металл, как медь, под воздействием влаги воздуха приобретает зеленоватый налет — патину. Причем оксидная пленка защищает металл от коррозии не во всех случаях — только если кристаллохимическая структура образовавшейся пленки сообразна строению металла, в противном случае — пленка ничем не поможет.

Сплавы подвержены другому типу коррозии: некоторые элементы сплавов не окисляются, а восстанавливаются (например, в сочетании высокой температуры и давления в сталях происходит восстановление водородом карбидов), при этом сплавы полностью утрачивают необходимые характеристики.

Электрохимическая коррозия

Процесс электрохимической коррозии не нуждается в обязательном погружении металла в электролит — достаточно тонкой электролитической пленки на его поверхности (часто электролитические растворы пропитывают среду, окружающую металл (бетон, почву и т.д.)). Наиболее распространенной причиной электрохимической коррозии является повсеместное применение бытовой и технической солей (хлориды натрия и калия) для устранения льда и снега на дорогах в зимний период — особенно страдают автомашины и подземные коммуникации (по статистике, ежегодные потери в США от использования солей в зимний период составляют 2,5 млрд. долларов).

Происходит следующее: металлы (сплавы) утрачивают часть атомов (они переходят в электролитический раствор в виде ионов), электроны, замещающие утраченные атомы, заряжают металл отрицательным зарядом, в то время как электролит имеет положительный заряд. Образуется гальваническая пара: металл разрушается, постепенно все его частицы становятся частью раствора. Электрохимическую коррозию могут вызывать блуждающие токи, возникающие при утечке из электрической цепи части тока в водные растворы или в почву и оттуда — в конструкции из металла. В тех местах, где блуждающие токи выходят из металлоконструкций обратно в воду или в почву, происходит разрушение металлов. Особенно часто блуждающие токи возникают в местах движения наземного электротранспорта (например, трамваев и ж/д локомотивов на электрической тяге). Всего за год блуждающие токи силой в 1А способны растворить железа — 9,1 кг, цинка — 10,7 кг, свинца — 33,4 кг.

Другие причины коррозии металла

Развитию коррозийных процессов способствуют радиация, продукты жизнедеятельности микроорганизмов и бактерий. Коррозия, вызываемая морскими микроорганизмами, наносит ущерб днищам морских судов, а коррозийные процессы, вызванные бактериями, даже имеют собственное название — биокоррозия.

Совокупность воздействия механических напряжений и внешней среды многократно ускоряет коррозию металлов — снижается их термоустойчивость, повреждаются поверхностные оксидные пленки, а в тех местах, где появляются неоднородности и трещины, активируется электрохимическая коррозия.

Меры защиты металлов от коррозии

Неизбежными последствиями технического прогресса является загрязнение нашей среды обитания — процесс, ускоряющий коррозию металлов, поскольку внешняя окружающая среда проявляет к ним все большую агрессию. Каких-либо способов полностью исключить коррозийное разрушение металлов не существует, все, что можно сделать, это максимально замедлить этот процесс.

Для минимизации разрушения металлов можно сделать следующее: снизить агрессию среды, окружающей металлическое изделие; повысить устойчивость металла к коррозии; исключить взаимодействие между металлом и веществами из внешней среды, проявляющими агрессию.

Человечеством за тысячи лет испробованы многие способы защиты металлических изделий от химической коррозии, некоторые из них применяются по сей день: покрытие жиром или маслом, другими металлами, коррозирующими в меньшей степени (самый древний метод, которому уже более 2 тыс. лет — лужение (покрытие оловом)).

Антикоррозийная защита неметаллическими покрытиями

Неметаллические покрытия — краски (алкидные, масляные и эмали), лаки (синтетические, битумные и дегтевые) и полимеры образуют защитную пленку на поверхности металлов, исключающую (при своей целостности) контакт с внешней средой и влагой.

Применение красок и лаков выгодно тем, что наносить эти защитные покрытия можно непосредственно на монтажной и строительной площадке. Методы нанесения лакокрасочных материалов просты и поддаются механизации, восстановить поврежденные покрытия можно «на месте» — во время эксплуатации, эти материалы имеют сравнительно низкую стоимость и их расход на единицу площади невелик. Однако их эффективность зависит от соблюдения нескольких условий: соответствие климатическим условиям, в которых будет эксплуатироваться металлическая конструкция; необходимость применения исключительно качественных лакокрасочных материалов ; неукоснительное следование технологии нанесения на металлические поверхности. Лакокрасочные материалы лучше всего наносить несколькими слоями — их количество обеспечит лучшую защиту от атмосферного воздействия на металлическую поверхность.

В роли защитных покрытий от коррозии могут выступать полимеры — эпоксидные смолы и полистирол, поливинилхлорид и полиэтилен. В строительных работах закладные детали из железобетона покрываются обмазками из смеси цемента и перхлорвинила, цемента и полистирола.

Защита железа от коррозии покрытиями из других металлов

Существует два типа металлических покрытий-ингибиторов — протекторные (покрытия цинком, алюминием и кадмием) и коррозионностойкие (покрытия серебром, медью, никелем, хромом и свинцом). Ингибиторы наносятся химическим способом: первая группа металлов имеет большую электроотрицательность по отношению к железу, вторая — большую электроположительность. Наибольшее распространение в нашем обиходе получили металлические покрытия железа оловом (белая жесть, из нее производят консервные банки) и цинком (оцинкованное железо — кровельное покрытие), получаемые путем протягивания листового железа через расплав одного из этих металлов.

Часто цинкованию подвергаются чугунная и стальная арматура, а также водопроводные трубы — эта операция существенно повышает их стойкость к коррозии, но только в холодной воде (при проводе горячей воды оцинкованные трубы изнашиваются быстрее неоцинкованных). Несмотря на эффективность цинкования, оно не дает идеальной защиты — цинковое покрытие часто содержит трещины, для устранения которых требуется предварительное никелерование металлических поверхностей (покрытие никелем). Цинковые покрытия не позволяют наносить на них лакокрасочные материалы — нет устойчивого покрытия.

Лучшее решение для антикоррозийной защиты — алюминиевое покрытие. Этот металл имеет меньший удельный вес, а значит — меньше расходуется, алюминированные поверхности можно окрашивать и слой лакокрасочного покрытия будет устойчив. Кроме того, алюминиевое покрытие по сравнению с оцинкованным покрытием обладает большей стойкостью в агрессивных средах. Алюминирование слабо распространено из-за сложности нанесения этого покрытия на металлический лист — алюминий в расплавленном состоянии проявляет высокую агрессию к другим металлам (по этой причине расплав алюминия нельзя содержать в стальной ванне). Возможно, эта проблема будет полностью решена в самое ближайшее время — оригинальный способ выполнения алюминирования найден российскими учеными. Суть разработки заключается в том, чтобы не погружать стальной лист в расплав алюминия, а поднять жидкий алюминий к стальному листу.

Повышение коррозийной стойкости путем добавления в стальные сплавы легирующих добавок

Введение в стальной сплав хрома, титана, марганца, никеля и меди позволяет получить легированную сталь с высокими антикоррозийными свойствами. Особенную стойкость стальному сплаву придает большая доля хрома, благодаря которому на поверхности конструкций образуется оксидная пленка большой плотности. Введение в состав низколегированных и углеродистых сталей меди (от 0,2% до 0,5%) позволяет повысить их коррозийную устойчивость в 1,5-2 раза. Легирующие добавки вводятся в состав стали с соблюдением правила Таммана: высокая коррозийная устойчивость достигается, когда на восемь атомов железа приходится один атом легирующего металла.

Меры противодействия электрохимической коррозии

Для ее снижения необходимо понизить коррозийную активность среды посредством введения неметаллических ингибиторов и уменьшить количество компонентов, способных начать электрохимическую реакцию. Таким способом будет понижение кислотности почв и водных растворов, контактирующих с металлами. Для снижения коррозии железа (его сплавов), а также латуни, меди, свинца и цинка из водных растворов необходимо удалить диоксид углерода и кислород. В электроэнергетической отрасли проводится удаление из воды хлоридов, способных повлиять на локальную коррозию. С помощью известкования почвы можно снизить ее кислотность.

Защита от блуждающих токов

Снизить электрокоррозию подземных коммуникаций и заглубленных металлоконструкций возможно при соблюдении нескольких правил:

  • участок конструкции, служащий источником блуждающего тока, необходимо соединить металлическим проводником с рельсом трамвайной дороги;
  • трассы теплосетей должны размещаться на максимальном удалении от рельсовых дорог, по которым передвигается электротранспорт, свести к минимуму число их пересечений;
  • применение электроизоляционных трубных опор для повышения переходного сопротивления между грунтом и трубопроводами;
  • на вводах к объектам (потенциальным источникам блуждающих токов) необходима установка изолирующих фланцев;
  • на фланцевой арматуре и сальниковых компенсаторах устанавливать токопроводящие продольные перемычки — для наращивания продольной электропроводимости на защищаемом отрезке трубопроводов;
  • чтобы выровнять потенциалы трубопроводов, расположенных параллельно, необходимо установить поперечные электроперемычки на смежных участках.

Защита металлических объектов, снабженных изоляцией, а также стальных конструкций небольшого размера выполняется с помощью протектора, выполняющего функцию анода. Материалом для протектора служит один из активных металлов (цинк, магний, алюминий и их сплавы) — он принимает на себя большую часть электрохимической коррозии, разрушаясь и сохраняя главную конструкцию. Один анод из магния, к примеру, обеспечивает защиту 8 км трубопровода.

Абдюжанов Рустам, специально для рмнт.ру