95 доверительный интервал. Доверительный интервал

Обновлено: 3 марта 2020 г.
Файл примера

Построим в MS EXCEL доверительный интервал для оценки среднего значения распределения в случае известного значения дисперсии.

Разумеется, выбор уровня доверия полностью зависит от решаемой задачи. Так, степень доверия авиапассажира к надежности самолета, несомненно, должна быть выше степени доверия покупателя к надежности электрической лампочки.

Формулировка задачи

Предположим, что из генеральной совокупности имеющей взята выборка размера n. Предполагается, что стандартное отклонение этого распределения известно. Необходимо на основании этой выборки оценить неизвестное среднее значение распределения (μ, ) и построить соответствующий двухсторонний доверительный интервал .

Точечная оценка

Как известно из , статистика (обозначим ее Х ср ) является несмещенной оценкой среднего этой генеральной совокупности и имеет распределение N(μ;σ 2 /n).

Примечание : Что делать, если требуется построить доверительный интервал в случае распределения, которое не является нормальным? В этом случае на помощь приходит , которая гласит, что при достаточно большом размере выборки n из распределения не являющемся нормальным , выборочное распределение статистики Х ср будет приблизительно соответствовать нормальному распределению с параметрами N(μ;σ 2 /n).

Итак, точечная оценка среднего значения распределения у нас есть – это среднее значение выборки , т.е. Х ср . Теперь займемся доверительным интервалом.

Построение доверительного интервала

Обычно, зная распределение и его параметры, мы можем вычислить вероятность того, что случайная величина примет значение из заданного нами интервала. Сейчас поступим наоборот: найдем интервал, в который случайная величина попадет с заданной вероятностью. Например, из свойств нормального распределения известно, что с вероятностью 95%, случайная величина, распределенная по нормальному закону , попадет в интервал примерно +/- 2 от среднего значения (см. статью про ). Этот интервал, послужит нам прототипом для доверительного интервала .

Теперь разберемся,знаем ли мы распределение , чтобы вычислить этот интервал? Для ответа на вопрос мы должны указать форму распределения и его параметры.

Форму распределения мы знаем – это нормальное распределение (напомним, что речь идет о выборочном распределении статистики Х ср ).

Параметр μ нам неизвестен (его как раз нужно оценить с помощью доверительного интервала ), но у нас есть его оценка Х ср, вычисленная на основе выборки, которую можно использовать.

Второй параметр – стандартное отклонение выборочного среднего будем считать известным , он равен σ/√n.

Т.к. мы не знаем μ, то будем строить интервал +/- 2 стандартных отклонения не от среднего значения , а от известной его оценки Х ср . Т.е. при расчете доверительного интервала мы НЕ будем считать, что Х ср попадет в интервал +/- 2 стандартных отклонения от μ с вероятностью 95%, а будем считать, что интервал +/- 2 стандартных отклонения от Х ср с вероятностью 95% накроет μ – среднее генеральной совокупности, из которого взята выборка . Эти два утверждения эквивалентны, но второе утверждение нам позволяет построить доверительный интервал .

Кроме того, уточним интервал: случайная величина, распределенная по нормальному закону , с вероятностью 95% попадает в интервал +/- 1,960 стандартных отклонений, а не+/- 2 стандартных отклонения . Это можно рассчитать с помощью формулы =НОРМ.СТ.ОБР((1+0,95)/2) , см. файл примера Лист Интервал .

Теперь мы можем сформулировать вероятностное утверждение, которое послужит нам для формирования доверительного интервала : «Вероятность того, что среднее генеральной совокупности находится от среднего выборки в пределах 1,960 « стандартных отклонений выборочного среднего» , равна 95%».

Значение вероятности, упомянутое в утверждении, имеет специальное название , который связан с уровнем значимости α (альфа) простым выражением уровень доверия = 1 . В нашем случае уровень значимости α =1-0,95=0,05 .

Теперь на основе этого вероятностного утверждения запишем выражение для вычисления доверительного интервала :

где Z α/2 стандартного нормального распределения (такое значение случайной величины z , что P ( z >= Z α/2 )=α/2 ).

Примечание : Верхний α/2-квантиль определяет ширину доверительного интервала в стандартных отклонениях выборочного среднего. Верхний α/2-квантиль стандартного нормального распределения всегда больше 0, что очень удобно.

В нашем случае при α=0,05, верхний α/2-квантиль равен 1,960. Для других уровней значимости α (10%; 1%) верхний α/2-квантиль Z α/2 можно вычислить с помощью формулы =НОРМ.СТ.ОБР(1-α/2) или, если известен уровень доверия , =НОРМ.СТ.ОБР((1+ур.доверия)/2) .

Обычно при построении доверительных интервалов для оценки среднего используют только верхний α /2- квантиль и не используют нижний α /2- квантиль . Это возможно потому, что стандартное нормальное распределение симметрично относительно оси х ( плотность его распределения симметрична относительно среднего, т.е. 0 ) . Поэтому, нет нужды вычислять нижний α/2-квантиль (его называют просто α /2-квантиль ), т.к. он равен верхнему α /2- квантилю со знаком минус.

Напомним, что, не смотря на форму распределения величины х, соответствующая случайная величина Х ср распределена приблизительно нормально N(μ;σ 2 /n) (см. статью про ). Следовательно, в общем случае, вышеуказанное выражение для доверительного интервала является лишь приближенным. Если величина х распределена по нормальному закону N(μ;σ 2 /n), то выражение для доверительного интервала является точным.

Расчет доверительного интервала в MS EXCEL

Решим задачу. Время отклика электронного компонента на входной сигнал является важной характеристикой устройства. Инженер хочет построить доверительный интервал для среднего времени отклика при уровне доверия 95%. Из предыдущего опыта инженер знает, что стандартное отклонение время отклика составляет 8 мсек. Известно, что для оценки времени отклика инженер сделал 25 измерений, среднее значение составило 78 мсек.

Решение : Инженер хочет знать время отклика электронного устройства, но он понимает, что время отклика является не фиксированной, а случайной величиной, которая имеет свое распределение. Так что, лучшее, на что он может рассчитывать, это определить параметры и форму этого распределения.

К сожалению, из условия задачи форма распределения времени отклика нам не известна (оно не обязательно должно быть нормальным ). , этого распределения также неизвестно. Известно только его стандартное отклонение σ=8. Поэтому, пока мы не можем посчитать вероятности и построить доверительный интервал .

Однако, не смотря на то, что мы не знаем распределение времени отдельного отклика , мы знаем, что согласно ЦПТ , выборочное распределение среднего времени отклика является приблизительно нормальным (будем считать, что условия ЦПТ выполняются, т.к. размер выборки достаточно велик (n=25)) .

Более того, среднее этого распределения равно среднему значению распределения единичного отклика, т.е. μ. А стандартное отклонение этого распределения (σ/√n) можно вычислить по формуле =8/КОРЕНЬ(25) .

Также известно, что инженером была получена точечная оценка параметра μ равная 78 мсек (Х ср). Поэтому, теперь мы можем вычислять вероятности, т.к. нам известна форма распределения ( нормальное ) и его параметры (Х ср и σ/√n).

Инженер хочет знать математическое ожидание μ распределения времени отклика. Как было сказано выше, это μ равно математическому ожиданию выборочного распределения среднего времени отклика . Если мы воспользуемся нормальным распределением N(Х ср; σ/√n), то искомое μ будет находиться в интервале +/-2*σ/√n с вероятностью примерно 95%.

Уровень значимости равен 1-0,95=0,05.

Наконец, найдем левую и правую границу доверительного интервала . Левая граница: =78-НОРМ.СТ.ОБР(1-0,05/2)*8/КОРЕНЬ(25) = 74,864 Правая граница: =78+НОРМ.СТ.ОБР(1-0,05/2)*8/КОРЕНЬ(25)=81,136

Левая граница: =НОРМ.ОБР(0,05/2; 78; 8/КОРЕНЬ(25)) Правая граница: =НОРМ.ОБР(1-0,05/2; 78; 8/КОРЕНЬ(25))

Ответ : доверительный интервал при уровне доверия 95% и σ =8 мсек равен 78+/-3,136 мсек.

В файле примера на листе Сигма известна создана форма для расчета и построения двухстороннего доверительного интервала для произвольных выборок с заданным σ и уровнем значимости .

Функция ДОВЕРИТ.НОРМ()

Если значения выборки находятся в диапазоне B20:B79 , а уровень значимости равен 0,05; то формула MS EXCEL: =СРЗНАЧ(B20:B79)-ДОВЕРИТ.НОРМ(0,05;σ; СЧЁТ(B20:B79)) вернет левую границу доверительного интервала .

Эту же границу можно вычислить с помощью формулы: =СРЗНАЧ(B20:B79)-НОРМ.СТ.ОБР(1-0,05/2)*σ/КОРЕНЬ(СЧЁТ(B20:B79))

Примечание : Функция ДОВЕРИТ.НОРМ() появилась в MS EXCEL 2010. В более ранних версиях MS EXCEL использовалась функция ДОВЕРИТ() .

Сегодня это действительно слишком просто: вы можете подойти к компьютеру и практически без знания того, что вы делаете, создавать разумное и бессмыслицу с поистине изумительной быстротой. (Дж. Бокс)

Доверительные интервалы

Общий обзор

Взяв выборку из популяции, мы получим точечную оценку интересующего нас параметра и вычислим стандартную ошибку для того, чтобы указать точность оценки.

Однако, для большинства случаев стандартная ошибка как такова не приемлема. Гораздо полезнее объединить эту меру точности с интервальной оценкой для параметра популяции.

Это можно сделать, используя знания о теоретическом распределении вероятности выборочной статистики (параметра) для того, чтобы вычислить доверительный интервал (CI - Confidence Interval, ДИ - Доверительный интервал) для параметра.

Вообще, доверительный интервал расширяет оценки в обе стороны некоторой величиной, кратной стандартной ошибке (данного параметра); два значения (доверительные границы), определяющие интервал, обычно отделяют запятой и заключают в скобки.

Доверительный интервал для среднего

Использование нормального распределения

Выборочное среднее имеет нормальное распределение, если объем выборки большой, поэтому можно применить знания о нормальном распределении при рассмотрении выборочного среднего.

В частности, 95% распределения выборочных средних находится в пределах 1,96 стандартных отклонений (SD) среднего популяции.

Когда у нас есть только одна выборка, мы называем это стандартной ошибкой среднего (SEM) и вычисляем 95% доверительного интервала для среднего следующим образом:

Если повторить этот эксперимент несколько раз, то интервал будет содержать истинное среднее популяции в 95% случаев.

Обычно это доверительный интервал как, например, интервал значений, в пределах которого с доверительной вероятностью 95% находится истинное среднее популяции (генеральное среднее).

Хотя это не вполне строго (среднее в популяции есть фиксированное значение и поэтому не может иметь вероятность, отнесённую к нему) таким образом интерпретировать доверительный интервал, но концептуально это удобнее для понимания.

Использование t- распределения

Можно использовать нормальное распределение, если знать значение дисперсии в популяции. Кроме того, когда объем выборки небольшой, выборочное среднее отвечает нормальному распределению, если данные, лежащие в основе популяции, распределены нормально.

Если данные, лежащие в основе популяции, распределены ненормально и/или неизвестна генеральная дисперсия (дисперсия в популяции), выборочное среднее подчиняется t-распределению Стьюдента .

Вычисляем 95% доверительный интервал для генерального среднего в популяции следующим образом:

Где - процентная точка (процентиль) t- распределения Стьюдента с (n-1) степенями свободы, которая даёт двухстороннюю вероятность 0,05.

Вообще, она обеспечивает более широкий интервал, чем при использовании нормального распределения, поскольку учитывает дополнительную неопределенность, которую вводят, оценивая стандартное отклонение популяции и/или из-за небольшого объёма выборки.

Когда объём выборки большой (порядка 100 и более), разница между двумя распределениями (t-Стьюдента и нормальным) незначительна. Тем не менее всегда используют t- распределение при вычислении доверительных интервалов, даже если объем выборки большой.

Обычно указывают 95% ДИ. Можно вычислить другие доверительные интервалы, например 99% ДИ для среднего.

Вместо произведения стандартной ошибки и табличного значения t- распределения, которое соответствует двусторонней вероятности 0,05, умножают её (стандартную ошибку) на значение, которое соответствует двусторонней вероятности 0,01. Это более широкий доверительный интервал, чем в случае 95%, поскольку он отражает увеличенное доверие к тому, что интервал действительно включает среднее популяции.

Доверительный интервал для пропорции

Выборочное распределение пропорций имеет биномиальное распределение. Однако если объём выборки n разумно большой, тогда выборочное распределение пропорции приблизительно нормально со средним .

Оцениваем выборочным отношением p=r/n (где r - количество индивидуумов в выборке с интересующими нас характерными особенностями), и стандартная ошибка оценивается:

95% доверительный интервал для пропорции оценивается:

Если объём выборки небольшой (обычно когда np или n(1-p) меньше 5 ), тогда необходимо использовать биномиальное распределение для того, чтобы вычислить точные доверительные интервалы.

Заметьте, что если p выражается в процентах, то (1-p) заменяют на (100-p) .

Интерпретация доверительных интервалов

При интерпретации доверительного интервала нас интересуют следующие вопросы:

Насколько широк доверительный интервал?

Широкий доверительный интервал указывает на то, что оценка неточна; узкий указывает на точную оценку.

Ширина доверительного интервала зависит от размера стандартной ошибки, которая, в свою очередь, зависит от объёма выборки и при рассмотрении числовой переменной от изменчивости данных дают более широкие доверительные интервалы, чем исследования многочисленного набора данных немногих переменных.

Включает ли ДИ какие-либо значения, представляющие особенный интерес?

Можно проверить, ложится ли вероятное значение для параметра популяции в пределы доверительного интервала. Если да, то результаты согласуются с этим вероятным значением. Если нет, тогда маловероятно (для 95% доверительного интервала шанс почти 5%), что параметр имеет это значение.

Из данной статьи вы узнаете:

    Что такое доверительный интервал ?

    В чем суть правила 3-х сигм ?

    Как можно применить эти знания на практике?

В наше время из-за переизбытка информации, связанного с большим ассортиментом товаров, направлений продаж, сотрудников, направлений деятельности и т.д., бывает трудно выделить главное , на что, в первую очередь, стоит обратить внимание и приложить усилия для управления. Определение доверительного интервала и анализ выхода за его границы фактических значений - методика, которая поможет вам выделить ситуации , влияющие на изменение тенденций. Вы сможете развивать позитивные факторы и снизить влияние негативных. Данная технология применяется во многих известных мировых компаниях.

Существуют так называемые "оповещения" , которые информируют руководителей о том, что очередное значение в определенном направлении вышло за доверительный интервал . Что это означает? Это сигнал, что произошло какое-то нестандартное событие, которое, возможно, изменит существующую тенденцию в данном направлении. Это сигнал к тому, чтобы разобраться в ситуации и понять, что на неё повлияло.

Например, рассмотрим несколько ситуаций. Мы рассчитали прогноз продаж с границами прогноза по 100 товарным позициям на 2011 год по месяцам и в марте фактические продажи:

  1. По «Подсолнечному маслу» пробили верхнюю границу прогноза и не попали в доверительный интервал.
  2. По «Сухим дрожжам» вышли за нижнюю границу прогноза.
  3. По «Овсяным Кашам» пробили верхнюю границу.

По остальным товарам фактические продажи оказались в рамках заданных границ прогноза. Т.е. их продажи оказались в рамках ожиданий. Итак, мы выделили 3 товара, которые вышли за границы, и начали разбираться, что же повлияло на выход за границы:

  1. По «Подсолнечному маслу» мы вошли в новую торговую сеть, которая дала нам дополнительный объем продаж, что привело к выходу за верхнюю границу. Для этого товара стоит пересчитать прогноз до конца года с учетом прогноза продаж в данную сеть.
  2. По «Сухим дрожжам» машина застряла на таможне, и образовался дефицит в рамках 5 дней, что повлияло на снижение продаж и выход за нижнюю границу. Возможно, стоит разобраться, что послужило причиной и постараться не повторять данную ситуацию.
  3. По «Овсяным Кашам» было запущено мероприятие по стимулированию сбыта, которое дало значительный прирост продаж и привело к выходу за границы прогноза.

Мы выделили 3 фактора, которые повлияли на выход за границы прогноза. В жизни их может быть гораздо больше.Для повышения точности прогнозирования и планирования факторы, которые приводят к тому, что фактические продажи могут выйти за границы прогноза, стоит выделить и строить прогнозы и планы по ним отдельно. А затем учитывать их влияние на основной прогноз продаж. Также можно регулярно оценивать влияние данных факторов и менять ситуацию к лучшему за счет уменьшения влияния негативных и увеличения влияния позитивных факторов .

С помощью доверительного интервала мы можем:

  1. Выделить направления , на которые стоит обратить внимание, т.к. в этих направлениях произошли события, которые могут повлиять на изменение тенденции .
  2. Определить факторы , которые реально влияют на изменение ситуации.
  3. Принять взвешенное решение (например, о закупках, при планировании и т.д.).

Теперь рассмотрим, что такое доверительный интервал и как его рассчитать в Excel на примере.

Что такое доверительный интервал?

Доверительный интервал – это границы прогноза (верхняя и нижняя), в рамки которых с заданной вероятностью (сигма) попадут фактические значения.

Т.е. мы рассчитываем прогноз - это наш основной ориентир, но мы понимаем, что фактические значения вряд ли на 100% будут равны нашему прогнозу. И возникает вопрос, в какие границы могут попасть фактические значения, если существующая тенденция сохранится ? И на этот вопрос нам поможет ответить расчет доверительного интервала , т.е. - верхней и нижней границы прогноза.

Что такое заданная вероятность сигма?

При расчете доверительного интервала мы можем задать вероятность попадания фактических значений в заданные границы прогноза . Как это сделать? Для этого мы задаем значение сигма и, если сигма будет равна:

    3 сигма - то, вероятность попадания очередного фактического значения в доверительный интервал составят 99,7%, или 300 к 1, или существует 0,3% вероятности выхода за границы.

    2 сигма - то, вероятность попадания очередного значения в границы составляет ≈ 95,5 %, т.е. шансы примерно 20 к 1, или существует 4,5% вероятности выхода за границы.

    1 сигма - то, вероятность ≈ 68,3%, т.е. шансы примерно 2 к 1, или существует 31,7% вероятность того, что очередное значение выйдет за пределы доверительного интервала.

Мы сформулировали правило 3 сигм, которое гласит, что вероятность попадания очередного случайного значения в доверительный интервал с заданным значением три сигма составляет 99.7% .

Великим русским математиком Чебышевым была доказана теорема о том, что существует 10% вероятность выхода за границы прогноза с заданным значением три сигма. Т.е. вероятность попадания в доверительный интервал 3 сигма составит минимум 90%, в то время как попытка рассчитать прогноз и его границы «на глазок» чревата куда более существенными ошибками.

Как самостоятельно рассчитать доверительный интервал в Excel?

Расчет доверительного интервала в Excel (т.е. верхней и нижней границы прогноза) рассмотрим на примере. У нас есть временной ряд - продажи по месяцам за 5 лет. См. Вложенный файл.

Для расчета границ прогноза рассчитаем:

  1. Прогноз продаж ().
  2. Сигма - среднеквадратическое отклонение модели прогноза от фактических значений.
  3. Три сигма.
  4. Доверительный интервал.

1. Прогноз продаж.

=(RC[-14](данные во временном ряду) - RC[-1](значение модели) )^2(в квадрате)


3. Просуммируем для каждого месяца значения отклонений из 8 этапа Сумма((Xi-Ximod)^2), т.е. просуммируем январи, феврали... для каждого года.

Для этого воспользуемся формулой =СУММЕСЛИ()

СУММЕСЛИ(массив с номерами периодов внутри цикла (для месяцев от 1 до 12);ссылка на номер периода в цикле; ссылка на массив с квадратами разницы исходных данных и значений периодов)


4. Рассчитаем среднеквадратическое отклонение для каждого периода в цикле от 1 до 12 (10 этапво вложенном файле ).

Для этого из значения рассчитанного на 9 этапе мы извлекаем корень и делим на количество периодов в этом цикле минус 1 = КОРЕНЬ((Сумма(Xi-Ximod)^2/(n-1))

Воспользуемся формулами в Excel =КОРЕНЬ(R8 (ссылка на (Сумма(Xi-Ximod)^2) /(СЧЁТЕСЛИ($O$8:$O$67 (ссылка на массив с номерами цикла) ; O8 (ссылка на конкретный номер цикла, которые считаем в массиве) )-1))

С помощью формулы Excel = СЧЁТЕСЛИ мы считаем количество n


Рассчитав среднеквадратическое отклонение фактических данных от модели прогноза, мы получили значение сигма для каждого месяца - этап 10 во вложенном файле .

3. Рассчитаем 3 сигма.

На 11 этапе задаем количество сигм - в нашем примере «3» (11 этапво вложенном файле ):

Также удобные для практики значения сигма:

1,64 сигма - 10% вероятность выхода за предел (1 шанс из 10);

1,96 сигма - 5% вероятность выхода за пределы (1 шанс из 20);

2,6 сигма - 1% вероятность выхода за пределы (1 шанс из 100).

5) Рассчитываем три сигма , для этого мы значения «сигма» для каждого месяца умножаем на «3».

3.Определяем доверительный интервал.

  1. Верхняя граница прогноза - прогноз продаж с учетом роста и сезонности + (плюс) 3 сигма;
  2. Нижняя граница прогноза - прогноз продаж с учетом роста и сезонности – (минус) 3 сигма;

Для удобства расчета доверительного интервала на длительный период (см. вложенный файл) воспользуемся формулой Excel =Y8+ВПР(W8;$U$8:$V$19;2;0) , где

Y8 - прогноз продаж;

W8 - номер месяца, для которого будем брать значение 3-х сигма;

Т.е. Верхняя граница прогноза = «прогноз продаж» + «3 сигма» (в примере, ВПР(номер месяца; таблица со значениями 3-х сигма; столбец, из которого извлекаем значение сигма равное номеру месяца в соответствующей строке;0)).

Нижняя граница прогноза = «прогноз продаж» минус «3 сигма».

Итак, мы рассчитали доверительный интервал в Excel.

Теперь у нас есть прогноз и диапазон с границами в пределах, которого с заданной вероятностью сигма попадут фактические значения.

В данной статье мы рассмотрели, что такое сигма и правило трёх сигм, как определить доверительный интервал и для чего вы можете использовать данную методику на практике.

Точных вам прогнозов и успехов!

Чем Forecast4AC PRO может вам помочь при расчете доверительного интервала ?:

    Forecast4AC PRO автоматически рассчитает верхнюю или нижнюю границы прогноза для более чем 1000 временных рядов одновременно;

    Возможность анализа границ прогноза в сравнении с прогнозом, трендом и фактическими продажами на графике одним нажатием клавиши;

В программе Forcast4AC PRO есть возможность задать значение сигма от 1 до 3.

Присоединяйтесь к нам!

Скачивайте бесплатные приложения для прогнозирования и бизнес-анализа :


  • Novo Forecast Lite - автоматический расчет прогноза в Excel .
  • 4analytics - ABC-XYZ-анализ и анализ выбросов в Excel.
  • Qlik Sense Desktop и QlikView Personal Edition - BI-системы для анализа и визуализации данных.

Тестируйте возможности платных решений:

  • Novo Forecast PRO - прогнозирование в Excel для больших массивов данных.

Доверительный интервал (ДИ; в англ, confidence interval - CI) полученный в исследовании при выборке даёт меру точности (или неопределённости) результатов исследования, для того чтобы делать выводы о популяции всех таких пациентов (генеральная совокупность). Правильное определение 95% ДИ можно сформулировать так: 95% таких интервалов будет содержать истинную величину в популяции. Несколько менее точна такая интерпретация: ДИ - диапазон величин, в пределах которого можно на 95% быть уверенным в том, что он содержит истинную величину. При использовании ДИ акцент делается на определении количественного эффекта, в противоположность величине Р, которая получается в результате проверки статистической значимости. Величина Р не оценивает никакого количества, а служит скорее мерой силы свидетельства против нулевой гипотезы «никакого эффекта». Величина Р сама по себе не говорит нам ничего ни о величине различия, ни даже о его направлении. Поэтому самостоятельные величины Р абсолютно неинформативны в статьях или рефератах. В отличие от них ДИ указывает и на количество эффекта, представляющего непосредственный интерес, например на полезность лечения, и на силу доказательств. Поэтому ДИ непосредственно имеет отношение к практике ДМ.

Подход оценки к статистическому анализу, иллюстрируемый ДИ, направлен на измерение количества интересующего нас эффекта (чувствительность диагностического теста, частота прогнозируемых случаев, сокращение относительного риска при лечении и т.д.), а также на измерение неопределённости в этом эффекте. Чаще всего ДИ - диапазон величин по обе стороны оценки, в котором, вероятно, лежит истинная величина, и можно быть уверенным в этом на 95%. Соглашение использовать 95% вероятность произвольно, также как и величину Р <0,05 для оценки статистической значимости, и авторы иногда используют 90% или 99% ДИ. Заметим, что слово «интервал» означает диапазон величин и поэтому стоит в единственном числе. Две величины, которые ограничивают интервал, называются «доверительными пределами».

ДИ основан на идее, что то же самое исследование, выполненное на других выборках пациентов, не привело бы к идентичным результатам, но что их результаты будут распределены вокруг истинной, однако неизвестной величины. Иными словами, ДИ описывает это как «вариабельность, зависящую от выборки». ДИ не отражает дополнительную неопределённости, обусловленную другими причинами; в частности, он не включает влияние селективной потери пациентов при отслеживании, плохого комплайнса или неточного измерения исхода, отсутствия «ослепления» и т.д. ДИ, таким образом, всегда недооценивает общее количество неопределённости.

Вычисление доверительного интервала

Таблица А1.1. Стандартные ошибки и доверительные интервалы для некоторых клинических измерений

Обычно ДИ вычисляют из наблюдаемой оценки количественного показателя, такого, как различие (d) между двумя пропорциями, и стандартной ошибки (SE) в оценке этого различия. Приблизительный 95% ДИ, получаемый таким образом, - d ± 1,96 SE. Формула изменяется согласно природе меры исхода и охвату ДИ. Например, в рандомизированном плацебо-контролируемом испытании бесклеточной коклюшной вакцины коклюш развивался у 72 из 1670 (4,3%) младенцев, получивших вакцину, и у 240 из 1665 (14,4%) в группе контроля. Различие в процентах, известное как абсолютное снижение риска, составляет 10,1%. SE этого различия равна 0,99%. Соответственно 95% ДИ составляет 10,1% + 1,96 х 0,99%, т.е. от 8,2 до 12,0.

Несмотря на разные философские подходы, ДИ и тесты на статистическую значимость тесно связаны математически.

Таким образом, величина Р «значимая», т.е. Р <0,05 соответствует 95% ДИ, который исключает величину эффекта, указывающую на отсутствие различия. Например, для различия между двумя средними пропорциями это ноль, а для относительного риска или отношения шансов - единица. При некоторых обстоятельствах эти два подхода могут быть не совсем эквивалентны. Преобладающая точка зрения: оценка с помощью ДИ - предпочтительный подход к суммированию результатов исследования, но ДИ и величина Р взаимодополняющи, и во многих статьях используются оба способа представления результатов.

Неопределенность (неточность) оценки, выражаемая в ДИ, в большой степени связана с квадратным корнем из размера выборки. Маленькие выборки предоставляют меньше информации, чем большие, и ДИ соответственно шире в меньшей выборке. Например, статья, сравнивающая характеристики трёх тестов, которые применяются для диагностики инфекции Helicobacter pylori , сообщила о чувствительности дыхательной пробы с мочевиной 95,8% (95% ДИ 75-100). В то время как число 95,8% выглядит внушительно, маленькая выборка из 24 взрослых пациентов с Я. pylori означает, что имеется значительная неопределенность в этой оценке, как показывает широкий ДИ. Действительно, нижний предел 75% намного ниже, чем оценка 95,8%. Если бы такая же чувствительность наблюдалась в выборке 240 человек, то 95% ДИ составлял бы 92,5-98,0, давая больше гарантий, что тест высокочувствителен.

В рандомизированных контролируемых испытаниях (РКИ) незначимые результаты (т.е. те, где Р >0,05) особенно подвержены неверному толкованию. ДИ особенно полезен здесь, поскольку он показывает, насколько совместимы результаты с клинически полезным истинным эффектом. Например, в РКИ, сравнивающем наложение анастомоза швом и скрепками на толстой кишке , раневая инфекция развилась у 10,9% и 13,5% пациентов соответственно (Р = 0,30). 95% ДИ для этого различия составляет 2,6% (от -2 до +8). Даже в этом исследовании, включавшем 652 пациента, остаётся вероятность, что существует умеренное различие в частоте инфекций, возникающих вследствие этих двух процедур. Чем меньше исследование, тем больше неуверенность. Сунг и соавт. выполнили РКИ, чтобы сравнить инфузию октреотида со срочной склеротерапией при остром кровотечении из варикозно-расширенных вен на 100 пациентах. В группе октреотида частота остановки кровотечения составила 84%; в группе склеротерапии - 90%, что даёт Р = 0,56. Заметим, что показатели продолжающегося кровотечения аналогичны таковым при раневой инфекции в упомянутом исследовании. В этом случае, однако, 95% ДИ для различия вмешательств равен 6% (от -7 до +19). Этот интервал весьма широк по сравнению с 5% различием, которое представляло бы клинический интерес. Ясно, что исследование не исключает значительной разницы в эффективности. Поэтому заключение авторов «инфузия октреотида и склеротерапия одинаково эффективны при лечении кровотечения из варикозно-расширенных вен» определённо невалидно. В подобных случаях, когда, как здесь, 95% ДИ для абсолютного снижения риска (АСР; absolute risk reduction - ARR, англ.) включает ноль, ДИ для ЧПЛП (NNT - number needed to treat, англ.) является довольно затруднительным для толкования. ЧПЛП и его ДИ получают из величин, обратных АСР (умножая их на 100, если эти величины даны в виде процентов). Здесь мы получаем ЧПЛП = 100: 6 = 16,6 с 95% ДИ от -14,3 до 5,3. Как видно из сноски «d» в табл. А1.1, этот ДИ включает величины ЧПЛП от 5,3 до бесконечности и ЧПЛВ от 14,3 до бесконечности.

ДИ можно построить для большинства обычно употребляемых статистических оценок или сравнений. Для РКИ он включает разность между средними пропорциями, относительными рисками, отношениями шансов и ЧПЛП. Аналогично ДИ можно получить для всех главных оценок, сделанных в исследованиях точности диагностических тестов - чувствительности, специфичности, прогностической значимости положительного результата (все они являются простыми пропорциями), и отношения правдоподобия - оценок, получаемых в метаанализах и исследованиях типа сравнения с контролем. Компьютерная программа для персональных компьютеров, которая покрывает многие из этих способов использования ДИ, доступна со вторым изданием «Statistics with Confidence». Макросы для вычисления ДИ для пропорций бесплатно доступны для Excel и статистических программ SPSS и Minitab на http://www.uwcm.ac.uk/study/medicine/epidemiology_ statistics/research/statistics/proportions, htm.

Множественные оценки эффекта лечения

В то время как построение ДИ желательно для первичных результатов исследования, они не обязательны для всех результатов. ДИ касается клинически важных сравнений. Например, при сравнении двух групп правилен тот ДИ, что построен для различия между группами, как показано выше в примерах, а не ДИ, который можно построить для оценки в каждой группе. Мало того, что бесполезно давать отдельные ДИ для оценок в каждой группе, это представление может вводить в заблуждение. Точно так же правильный подход при сравнении эффективности лечения в различных подгруппах - сравнение двух (или более) подгрупп непосредственно. Неправильно предполагать, что лечение эффективно только в одной подгруппе, если ее ДИ исключает величину, соответствующую отсутствию эффекта, а другие - нет . ДИ полезны также при сравнении результатов в нескольких подгруппах. На рис. А 1.1 показан относительный риск эклампсии у женщин с преэклампсией в подгруппах женщин из плацебо-контролируемого РКИ сульфата магния.

Рис. А1.2. Лесной график показывает результаты 11 рандомизированных клинических испытаний бычьей ротавирусной вакцины для профилактики диареи в сравнении с плацебо. При оценке относительного риска диареи использован 95% доверительный интервал. Размер чёрного квадрата пропорционален объёму информации. Кроме того, показана суммарная оценка эффективности лечения и 95% доверительного интервала (обозначается ромбом). В метаанализе использована модель случайных эффектов превышает некоторые предварительно установленные; например, это может быть размер, использованный при вычислении величины выборки. В соответствии с более строгим критерием весь диапазон ДИ должен показывать пользу, превышающую предустановленный минимум.

Мы уже обсуждали ошибку, когда отсутствие статистической значимости принимают как указание на то, что два способа лечения одинаково эффективны. Столь же важно не уравнивать статистическую значимость с клинической важностью. Клиническую важность можно предполагать, когда результат статистически значим и величина оценки эффективности лечения

Исследования могут показать, значимы ли результаты статистически и какие из них клинически важны, а какие - нет. На рис. А1.2 приведены результаты четырёх испытаний, для которых весь ДИ <1, т.е. их результаты статистически значимы при Р <0,05 , . После высказанного предположения о том, что клинически важным различием было бы сокращение риска диареи на 20% (ОР = 0,8), все эти испытания показали клинически значимую оценку сокращения риска, и лишь в исследовании Treanor весь 95% ДИ меньше этой величины. Два других РКИ показали клинически важные результаты, которые не были статистически значимыми. Обратите внимание, что в трёх испытаниях точечные оценки эффективности лечения были почти идентичны, но ширина ДИ различалась (отражает размер выборки). Таким образом, по отдельности доказательная сила этих РКИ различна.

Доверительные интервалы (англ. Confidence Intervals ) одним из типов интервальных оценок используемых в статистике, которые рассчитываются для заданного уровня значимости. Они позволяют сделать утверждение, что истинное значение неизвестного статистического параметра генеральной совокупности находится в полученном диапазоне значений с вероятностью, которая задана выбранным уровнем статистической значимости.

Нормальное распределение

Когда известна вариация (σ 2) генеральной совокупности данных, для расчета доверительных пределов (граничных точек доверительного интервала) может быть использована z-оценка. По сравнению с применением t-распределения, использование z-оценки позволит построить не только более узкий доверительный интервал, но и получить более надежные оценки математического ожидания и среднеквадратического (стандартного) отклонения (σ), поскольку Z-оценка основывается на нормальном распределении.

Формула

Для определения граничных точек доверительного интервала, при условии что известно среднеквадратическое отклонение генеральной совокупности данных, используется следующая формула

L = X - Z α/2 σ
√n

Пример

Предположим, что размер выборки насчитывает 25 наблюдений, математическое ожидание выборки равняется 15, а среднеквадратическое отклонение генеральной совокупности составляет 8. Для уровня значимости α=5% Z-оценка равна Z α/2 =1,96. В этом случае нижняя и верхняя граница доверительного интервала составят

L = 15 - 1,96 8 = 11,864
√25
L = 15 + 1,96 8 = 18,136
√25

Таким образом, мы можем утверждать, что с вероятностью 95% математическое ожидание генеральной совокупности попадет в диапазон от 11,864 до 18,136.

Методы сужения доверительного интервала

Допустим, что диапазон является слишком широким для целей нашего исследования. Уменьшить диапазон доверительного интервала можно двумя способами.

  1. Снизить уровень статистической значимости α.
  2. Увеличить объем выборки.

Снизив уровень статистической значимости до α=10%, мы получим Z-оценку равную Z α/2 =1,64. В этом случае нижняя и верхняя граница интервала составят

L = 15 - 1,64 8 = 12,376
√25
L = 15 + 1,64 8 = 17,624
√25

А сам доверительный интервал может быть записан в виде

В этом случае, мы можем сделать предположение, что с вероятностью 90% математическое ожидание генеральной совокупности попадет в диапазон .

Если мы хотим не снижать уровень статистической значимости α, то единственной альтернативой остается увеличение объема выборки. Увеличив ее до 144 наблюдений, получим следующие значения доверительных пределов

L = 15 - 1,96 8 = 13,693
√144
L = 15 + 1,96 8 = 16,307
√144

Сам доверительный интервал станет иметь следующий вид

Таким образом, сужение доверительного интервала без снижения уровня статистической значимости возможно только лишь за счет увеличения объема выборки. Если увеличение объема выборки не представляется возможным, то сужение доверительного интервала может достигаться исключительно за счет снижения уровня статистической значимости.

Построение доверительного интервала при распределении отличном от нормального

В случае если среднеквадратичное отклонение генеральной совокупности не известно или распределение отлично от нормального, для построения доверительного интервала используется t-распределение. Это методика является более консервативной, что выражается в более широких доверительных интервалах, по сравнению с методикой, базирующейся на Z-оценке.

Формула

Для расчета нижнего и верхнего предела доверительного интервала на основании t-распределения применяются следующие формулы

L = X - t α σ
√n

Распределение Стьюдента или t-распределение зависит только от одного параметра – количества степеней свободы, которое равно количеству индивидуальных значений признака (количество наблюдений в выборке). Значение t-критерия Стьюдента для заданного количества степеней свободы (n) и уровня статистической значимости α можно узнать из справочных таблиц.

Пример

Предположим, что размер выборки составляет 25 индивидуальных значений, математическое ожидание выборки равно 50, а среднеквадратическое отклонение выборки равно 28. Необходимо построить доверительный интервал для уровня статистической значимости α=5%.

В нашем случае количество степеней свободы равно 24 (25-1), следовательно соответствующее табличное значение t-критерия Стьюдента для уровня статистической значимости α=5% составляет 2,064. Следовательно, нижняя и верхняя граница доверительного интервала составят

L = 50 - 2,064 28 = 38,442
√25
L = 50 + 2,064 28 = 61,558
√25

А сам интервал может быть записан в виде

Таким образом, мы можем утверждать, что с вероятностью 95% математическое ожидание генеральной совокупности окажется в диапазоне .

Использование t-распределения позволяет сузить доверительный интервал либо за счет снижения статистической значимости, либо за счет увеличения размера выборки.

Снизив статистическую значимость с 95% до 90% в условиях нашего примера мы получим соответствующее табличное значение t-критерия Стьюдента 1,711.

L = 50 - 1,711 28 = 40,418
√25
L = 50 + 1,711 28 = 59,582
√25

В этом случае мы можем утверждать, что с вероятностью 90% математическое ожидание генеральной совокупности окажется в диапазоне .

Если мы не хотим снижать статистическую значимость, то единственной альтернативой будет увеличение объема выборки. Допустим, что он составляет 64 индивидуальных наблюдения, а не 25 как в первоначальном условии примера. Табличное значение t-критерия Стьюдента для 63 степеней свободы (64-1) и уровня статистической значимости α=5% составляет 1,998.

L = 50 - 1,998 28 = 43,007
√64
L = 50 + 1,998 28 = 56,993
√64

Это дает нам возможность утверждать, что с вероятностью 95% математическое ожидание генеральной совокупности окажется в диапазоне .

Выборки большого объема

К выборкам большого объема относятся выборки из генеральной совокупности данных, количество индивидуальных наблюдений в которых превышает 100. Статистические исследования показали, что выборки большего объема имеют тенденцию быть нормально распределенными, даже если распределение генеральной совокупности отличается от нормального. Кроме того, для таких выборок применение z-оценки и t-распределения дают примерно одинаковые результаты при построении доверительных интервалов. Таким образом, для выборок большого объема допускается применение z-оценки для нормального распределения вместо t-распределения.

Подведем итоги