Способы стерилизации. Электронно-лучевая стерилизация Преимущества радиационной стерилизации перед газовой

Использование радиации для обеспложивания объектов, нуждающихся в консервации и предназначенных для медицинского применения, называется радиационной стерилизацией. При лучевой стерилизации обеспложивание достигается без высокой температуры, поэтому радиационную или лучевую стерилизацию называют также холодной.

Метод радиостерилизации должен удовлетворять двум требованиям:

Облучение должно оказывать на микроорганизмы с разной радиочувствительностью бактерицидное действие;

Радиостерилизация не должна изменять качеств и свойств обрабатываемых объектов.

С помощью ионизирующих излучений стерилизуют перевязочные и шовные материалы, некоторые лекарственные препараты, в том числе антибиотики и гормоны, биологические ткани и т.д.

Ионизирующие излучения используют также для производства вакцин и стерилизации токсинов. Особенно перспективен метод лучевой стерилизации различных изделий одноразового пользования, изготовляемых из пластмасс, например, систем службы крови и шприцев. Однократное употребление этих шприцев ликвидирует опасность заражения инфекционным гепатитом, что наблюдается при стерилизации шприцев обычным способом. Широко радиационная стерилизация внедряется в производство таких медицинских изделий из полимерных материалов, как шприцы, системы службы крови, а также лекарственные препараты и биологические ткани.

Вместе с тем, внедрение лучевой стерилизации в практику встречает некоторые трудности, связанные с необходимостью значительных затрат на строительство специальных радиационных установок и закупку радиоактивных источников, стоимость которых остается пока повсеместно очень высокой. Однако, как показали экономические расчеты, произведенные зарубежными фирмами, затраты окупаются в течении первых нескольких лет.

Стерилизация медицинских изделий из полимерных материалов

В эту группу входят изделия, которые используются однократно. Однократность использования определяется двумя условиями:

1) Наиболее важным является необходимость исключить возможность передачи инфекции при повторном или многократном использовании изделия даже в том случае, когда оно стерилизуется после употребления.

2) ограничивающее многократное использование изделия, зависит от степени радиационной стойкости полимерного материала, который изменяет свою структуру, деформируется, теряет эластичность, прочность и прозрачность, может начать выделять вещества, оказывающие на организм токсическое действие. Наибольшее распространение получили шприцы. Самых разных объемов и конструкций, с иглами и без игл, для подкожных инъекций, шприцы одноразового использования выпускаются миллионами штук в год и подвергаются лучевой стерилизации.

Пластмассовые шприцы производятся и стерилизуются радиационным способом в США, Англии, в Швеции, Дании, Норвегии, Финляндии, во Франции, в Канаде, Италии, ФРГ и других странах. Обычно каждый шприц (с иглой или без иглы) имеет индивидуальную упаковку, обеспечивающую стерильность изделия после лучевой обработки в течение длительного срока (1-2 года). Иногда некоторые фирмы выпускают шприцы в двойной упаковке, что в большей степени гарантирует от попадания микроорганизмов на изделие из внешней среды. Однако большей частью несколько шприцев в индивидуальной упаковке помещают в общую вторую упаковку.

Несколько маленьких партий шприцев в двойной упаковке укладывают в ящики и стерилизуют большими партиями. Для стерилизации используют радиационные установки двух типов:

1. изотопные, в которых применяют в качестве источника гамма-излучения Со 60 ;

2. ускорители электронов.

Споры разгораются при выборе стерилизующей дозы облучения для шприцев. Существуют две точки зрения. В США и Англии для стерилизации шприцев принята доза 25 кГр, а в Скандинавских странах минимальная стерилизующая доза равна 32 кГр (при стерилизации на гамма-установках)-35 кГр (при стерилизации на ускорителях). Доза 25 кГр была выбрана в США на основании работ Van Winkle , проводившихся в 50-х годах и показавших, что самые устойчивые микроорганизмы, обсеменявшие изделия, выпускаемые с США" могут погибнуть при 19 кГр, даже если они присутствуют в концентрациях больших, чем при обычном обсеменении. В зависимости от ряда коэффициентов ("коэффициент безопасности", изменение плотности) доза, гарантирующая стерильность, колебалась от 23 до 26 кГр . Эти величины определили выбор дозы в 25 кГр для медицинских изделий одноразового использования из пластмасс. Несколько позже в Дании в связи с началом промышленного выпуска радиационно-стерилизованных шприцев одноразового использования Э. Кристенсеном были проведены фундаментальные исследования, показавшие, что в воздухе производственных помещений и на самих изделиях могут находиться высокорадиоредистентные микроорганизмы. Для достижения бактерицидного эффекта при обсеменении этими высокорадиоредистентными бактериями требовалась доза, значительно превышающая 25 кГр. Увеличения дозы облучения для надежной стерилизации требовала не только высокая степень радиорезистентности выявленных бактерий, но и количество бактерий на единицу стерилизуемых изделий до облучения - инициальная контаминация продукции .

В настоящее время величина инициальной контаминации играет решающую роль при выборе дозы облучения и для гигиенических требований на производстве, поэтому даже в тех странах, где для стерилизации пластмассовых изделий принята доза 25 кГр, производят обязательное исследование инициальной контаминации изделий. В последние годы в связи с возрастающей потребностью здравоохранения в шприцах одноразового использования некоторые страны закупают шприцы. Таким образом, они пользуются изделиями, простерилизованными в дозах, значительно превышающих 25 кГр. Скандинавские страны, широко использующие радиационную стерилизацию пластмассовых изделий медицинского назначения одноразового использования, при выборе дозы облучения обязательно учитывают величину инициальной контаминации шприцев и исходят при этом из того, что чем большее количество микроорганизмов обсеменяет изделие, тем больше шансов, что среди них могут встретиться микроорганизмы с высокой радиорезистентностью. В этом случае доза 25 кГр не гарантирует стерильности всех изделий.

Метод радиационной стерилизации широко используется также для обеспложивания изделий службы крови (системы переливания и взятия крови, мешки для хранения крови). Для этих изделий, так же как и для различных пластмассовых трубок и катетеров, которые вводятся в организм при операциях и исследованиях, предъявляются повышенные требования к надежности стерилизации. Понятна особая требовательность к стерильности этих изделий. Она связана с тем, что системы службы крови (взятия и переливания крови, мешки или резервуары для хранения крови) используют в лечебной практике для переливания крови больным людям с ослабленной резистентностью к инфекции. Поэтому попадание в такой ослабленный организм даже единиц микроорганизмов может привести к тяжелым осложнениям, например, к заражению крови.

Системы службы крови состоят из различных составных частей: трубки, капельницы, фильтры, иглы, зажимы. Все эти части сделаны из различных полимерных материалов и из металла. При ручной сборке частей системы происходит загрязнение их и поэтому инициальная контаминация систем службы крови значительно больше по сравнению с инициальной контаминацией шприцев или катетеров, не требующих ручной сборки. Сложность изделий и наличие твердых деталей, имеющих угловатую форму, нередко приводит к нарушению герметизации индивидуальной упаковки, как при стерилизации, так и при хранении систем. Поэтому везде используют двойную упаковку; либо каждое изделие заключают в два мешочка (внутренний, непосредственно прилегающий к изделию, и внешний, в который вкладывают уже заделанный герметически внутренний мешочек с изделием), либо несколько систем (5--10 штук, каждая в индивидуальной упаковке) заключают в общий внешний мешок. Сравнительно большая инициальная контаминация систем службы крови и использование их для организма с пониженной устойчивостью к инфекции, для ослабленного организма, требуют особенно внимательного подхода к выбору стерилизующей дозы облучения. В этом случае для большей гарантии предпочитают облучать в дозах, приближающихся к 40 кГр или даже более 42--45 кГр .

Вопрос о стерилизующей дозе облучения при радиационном методе стерилизации является основным, если не решающим, во всей проблеме лучевой стерилизации, поскольку доза облучения определяет целесообразность и стоимость процесса. Целесообразность использования метода радиационной стерилизации ограничивается, в свою очередь, радиационной стойкостью полимерных материалов изделий и упаковки. Все это вместе взятое оказывает большое влияние на санитарно-гигиенические требования к заводам - изготовителям изделий, подлежащих радиационной стерилизации, и к упаковке этих изделий: к самим материалам, из которых производятся изделия и в которые они упаковываются, и к герметичности упаковки. При стерилизации других медицинских изделий из пластмасс, используемых однократно, должны соблюдаться те же требования относительно дозы облучения, инициальной контаминации и санитарно-гигиенических условий на производстве, радиационной стойкости материалов, из которых изготовлено изделие, и относительно упаковки .

В еще больших гарантиях стерильности, в более строгих санитарно-гигиенических условиях при изготовлении и возможно меньшей инициальной контаминации нуждаются получившие широкое распространение в хирургии в настоящее время изготовляемые из полимерных материалов искусственные кровеносные сосуды, искусственные сердечные клапаны, пластиковые трубки, используемые при трахеотомии. Номенклатура и количество пластмассовых изделий медицинского назначения все время растут, и продукция, подлежащая радиационной стерилизации, достигает десятков и сотен миллионов штук ежегодно - даже дли таких небольших стран, как Дания, Голландия, Бельгия и Швеция. Неизменное из года в год увеличение потребности в медицинских изделиях из пластмасс одноразового использования, а также использование метода радиационной стерилизации лабораторной посуды из полимерных материалов заставляет развиваться отрасль радиационной техники, создающей крупные стационарные облучательные установки промышленного типа. Эти установки, требующие значительных капиталовложений, удорожают стоимость радиационной стерилизации по сравнению со стоимостью тепловой или газовой стерилизация. Однако, чем дольше работает такая установка, тем меньше с каждым годом ее работы стоит стерилизация медицинских изделии. Следует иметь в виду и то обстоятельство, что современная медицина не может обойтись без использования таких изделий, материалов и лекарственных препаратов, которые требуют радиационной стерилизации. Поэтому, несмотря на то, что стоимость радиационной стерилизации еще надолго останется более высокой по сравнению со стоимостью, других способов стерилизации, отказ от этого способа обеспложивания по экономическим причинам невозможен.

Антимикробная обработка может быть осуществлена с помощью ионизирующего излучения (γ– лучи). Доза проникающей радиации должна быть весьма значительной – до 20-25 мкГр. В связи я этим лучевая стерилизация проводится в специальных помещениях и является заводским методом (в стационарах не используется).Кхимической стерилизации относят стерилизацию антисептиками и газовую стерилизацию. Газовая стерилизация осуществляется в специальных герметичных камерах, стерилизующим агентом является окись этилена или пары формалина. Инструменты уложенные на сетку считаются стерильными через 6-48 часов (в зависимости от компонентов газовой смеси и температуры). Отличительная особенность метода – его минимальное отрицательное влияние на качество инструментария (чаще используют для стерилизации оптических приборов).

При стерилизации антисептиками используют в основном 3 раствора: тройной раствор (формалин, карболовая кислота, сода), 96˚ этиловый спирт, 6% раствор перекиси водорода. Инструменты в разобранном виде погружают в один из растворов. При замачивании в спирте и тройном растворе, инструменты стерильны через 2-3 часа, в перекиси водорода – через 6 часов.

Стерилизация хирургических инструментов.

Обработка всех инструментов включает в себя 2 этапа: предстерилизационная обработка и собственно стерилизация. Следует отметить, что инструменты после гнойных операций, операций у больных перенесших за последние 5 лет гепатит, а также при риске СПИДа обрабатываются отдельно от других. Работа с инструментарием осуществляется строго в перчатках.

Обеззараживание.

После использования инструменты погружают в раствор дезинфецирующего средства: 3% раствор хлорамина (экспозиция 40-60 минут), 6% перекисьводорода (экспозиция 90 минут).

Мытьё.

Инструменты погружают в моющий (щелочной) раствор, в состав которого входят моющее средство (порошок), перекись водорода и вода. Температура раствора 50-60˚, экспозиция 20 минут.

Высушивание.

Высушивание может осуществляться естественным путём или в сухожаровом шкафу при 80˚Cв течении 30 минут. После чего инструменты готовы к стерилизации.

Собственно стерилизация – зависит от вида хирургических инструментов.

Все хирургические инструменты можно разделить на 3 группы:

Металлические (режущие и нережущие), - резиновые и пластмассовые, - оптические.

Стерилизация нережущих хирургических инструментов выполняется в основном горячим воздухом в сухожаровом шкафу или в автоклаве. Возможно использование кипячения. Однако инструменты после операций по поводу анаэробной инфекции и в группе риска по гепатиту и СПИДу кипятить нельзя.

Проведение стерилизации режущих инструментов с помощью термических методов приводит к их затуплению и потере необходимых хирургу свойств. Основным методом стерилизации режущих инструментов является холодный химический способ с применением антисептиков. Самым лучшим методомстерилизации является газовая стерилизация.

Основным методом стерилизации резиновых и пластмассовых хирургических инструментов является автоклавирование. При многократной стерилизации резина теряет свои свойства – что является недостатком метода. Допускается также кипячение в течении 15 мин. Особо следует сказать о стерилизации перчаток. В последнее время чаще используют одноразовые перчатки, однако при многоразовом использовании основным методом стерилизации является автоклавирование в щадящем режиме: после предстерилизационной обработки перчатки высушивают, пересыпают тальком, заворачивают в марлю, укладывают в бикс и автоклавируют при 1,1 атм. В течении 30-40 минут.

Основным методом стерилизации оптических инструментов (лапаро- и торакоскопический инструментарий), требующих наиболее щадящей обработки с исключением нагревания, является газовая стерилизация.

При стерилизации эндоскопического инструментария (фиброгастроскопов, холедохоскопов, колоноскопов) используются химические антисептики. Следует особо отметить, что наилучшим способом профилактики контактной инфекции является использование одноразового инструментария.

Эффективность стерилизации контролируют химическими индикаторами (веществами, имеющими определенную точку плавления), реже - биологической пробой. При первом способе вещество-индикатор, смешанное с каким-нибудь красителем, в запаянной стеклянной трубочке помещают в автоклав и по его расплавлению и окрашиванию определяют температуру, при которой проводили стерилизацию. Для этой цели употребляют бензонафтол (t° плавления 110°), антипирин (t° плавления 110- 112°), (t° плавления 110°), (t° плавления 120°), бензойную кислоту (t° плавления 121,7°). При втором способе внутрь автоклава в стерильной упаковке кладут шелковые нити, смоченные споровым материалом; после окончания стерилизации их переносят на и выращивают в течение 2-3 суток при t° 37°. Отсутствие роста указывает на хорошее качество обработки материала.

Лучевая (холодная) стерилизация - метод, при котором в качестве стерилизующего агента применяются некоторые виды ионизирующих излучений, пригодных для стерилизации , лечебных и диагностических препаратов, антибиотиков, вакцин.

Для стерилизации обычно используют радиоактивных веществ и высоких энергий, полученные на ускорителях. Для получения стерилизующего эффекта необходимы высокие дозы облучения. Так, для гибели дрожжевых клеток необходимо облучение в дозе 200 000 р, а бактерий кишечной группы - 400 000-600 000 р. Для обеспложивания материалов, содержащих , необходимы еще большие дозы - 1,5- 2,5 млн. р.

Стерилизация ультрафиолетовым облучением проводится с помощью любого источника ультрафиолетовых лучей, чаще всего бактерицидных ламп. Бактерицидные лампы можно применять для обеззараживания воздуха и поверхностей помещений, различных предметов и оборудования, воды и пищевых продуктов. При работе с бактерицидными лампами, когда они находятся в , надо обязательно защитить глаза специальными очками и иметь в виду, что облучение бактерицидной лампой может вызвать ожог кожи лица и рук.

Стерилизация при помощи бактериальных фильтров (см.) применяется в тех случаях, когда стерилизуемые растворы (среды) не переносят нагревания, когда необходимо удалить микробы из той или иной жидкости, существенно не нарушив ее состава и свойств. Например, фильтруют воду, загрязненную микробами, мочу, асцитическую жидкость, кровяную сыворотку, а также бульонные культуры для получения содержащихся в бульоне продуктов обмена веществ бактерий (микробные яды, антибиотики и пр.). После все эти жидкости оказываются стерильными, так как фильтры надежно задерживают микробы.

Химическая стерилизация в лабораторной практике применяется для предупреждения бактериального загрязнения питательных сред, которые консервируют прибавлением , иногда . Для освобождения от консерванта среду нагревают в водяной бане до t° 56°. Вакцины и лечебные консервируют фенолом (0,25-0,5%), хлороформом (0,5%), (0,05%) или мертиолатом (в конечной концентрации 1: 5000- 1: 10 000). Для консервирования агглютинирующих сывороток пользуются борной кислотой, толуолом или глицерином. Химические соединения нашли широкое применение в лабораторной практике для дезинфекции (см.).

Сухожаровая стерилизация

Обжигание и кипячение

Физические методы стерилизации

ПРОФИЛАКТИКА КОНТАКТНОЙ ИНФЕКЦИИ

Профилактика контактной инфекции сводится к осуществлению главного принципа асептики: «Все, что соприкасается с раной, должно быть стерильно».

С операционной раной соприкасаются: хирургический инструментарий, перевязочный материал и хирургическое белье, руки хирурга.

Основой для профилактики контактной инфекции является стерилизация – полное освобождение какого-либо предмета от микроорганизмов путем воздействия на него с помощью физических или химических факторов.

В современной асептике используют физические и химические методы стерилизации .

Обжигание для стерилизации инструментов используют в экстремальных случаях. Кипячение не используем , так как при этом методе достигается температура лишь в 100 0 С, что недостаточно для уничтожения спороносных бактерий.

Стерилизация паром под давлением (автоклавирование)

Впервые стерилизация паром под повышенным давлением в автоклаве осуществлена в 1884 году Л.Л. Гендейрейхом. Метод автоклавирования применяется для стерилизации хирургического инструментария, перевязочных материалов, белья, перчаток, которые погружаются в специальные металлические биксы Шиммельбуша. Работа автоклава контролируется показаниями манометра и термометра.

Основные режимы стерилизации:

При давлении 1,1 атм. (t – 119,6 0 C) – 45 мин – стерилизация перчаток.

При давлении 2 атм. (t – 132,9 0 C) – 20 мин – стерилизация перевязочного материала, белья, хирургического инструментария.

Действующим агентом при этом способе является нагретый воздух. Стерилизация осуществляется в специальных аппаратах – шкафах-стерилизаторах. при температуре 180 0 С. Время стерилизации составляет 60 минут. Это главный и наиболее надежный способом стерилизации хирургических инструментов.

Используют гамма и бета - частицы и относительно тяжелые нейтроны, протоны и т. д. Радиоактивное излучение, проходя через среду, вызывает ионизацию последней, в связи с чем его называют ионизирующим излучением. Бактерицидный эффект ионизирующего излучения обусловлен воздействием на метаболические процессы бактериальной клетки. Наибольшее применение получила стерилизация гамма-лучами. Используются изотопы Co 60 и Cs 138 . Доза проникающей радиации значительна и составляет 2-2,5 Мрад. В связи с этим лучевая стерилизация в стационарах не производится и применяется в промышленных условиях.

Метод применяется для стерилизации одноразовых инструментов (шприцы, шовный материал, катетеры, зонды, системы для переливания крови, перчатки и др.). При сохранении целостности упаковки стерильные свойства предметов сохраняются в течение 5 лет.

В последние годы появилась новые безопасные технологии стерилизации — электронно-лучевая и стерилизация гамма-излучением.

Электронно-лучевой способ использует высокий уровень энергии электронов в качестве средства стерилизации. Электроны ускоряются до скорости света с помощью линейного ускорителя. Энергия электронов в диапазоне от 3 до 10 млн. электронвольт (МэВ) с мощностью пучка в диапазоне от 1 до 10 кВт оказывается достаточной для проникновения в продукт, герметично упакованный в готовую к отгрузке тару.

Электроны, сканируя продукт, проходят через множество вторичных частиц, включая ионы и свободные радикалы. Вторичные частицы разрывают ДНК-цепочки микроорганизмов и на внутренней поверхности упаковки, и внутри продукта, блокируя таким образом их дальнейшее размножение. Патогенные микробы разрушаются, и вследствие этого происходит стерилизация продукции.

Стерилизующим агентом при радиационной стерилизации может также быть проникающее гамма- или бета-излучение. Наиболее широко используется гамма-излучающий изотоп кобальта-60, реже изотоп цезия-137 в связи с его низким уровнем энергии и излучения. Бета-излучающие изотопы используются вообще крайне редко, так как бета-излучение обладает гораздо меньшей проникающей способностью.

Эффективность радиационной стерилизации зависит от общей дозы излучения и не зависит от времени. Средняя летальная доза для микроорганизмов всегда одинакова, проводится ли облучение при низкой интенсивности в течение длительного промежутка времени или недолго при высокой интенсивности излучения. Доза 25 кГр (2,5 Мрад) надежно гарантирует уничтожение высокорезистентных споровых форм микроорганизмов.

Радиационная стерилизация обладает рядом технологических преимуществ: высокая степень инактивации микроорганизмов, возможность стерилизации больших партий материалов, автоматизация процесса, возможность стерилизации материалов в любой герметичной упаковке (кроме радионепрозрачной) . Немаловажным обстоятельством является то, что температура стерилизуемых изделий в ходе стерилизации не повышается.

Отметим, что электронно-лучевое (ЭЛ) излучение не предполагает глубинного проникновения в толщу продукта, как это делает гамма-излучение. В зависимости от плотности продукции ЭЛ-излучение проникает в продукт на глубину до 40 см от поверхности. Действие ЭЛ-излучения ограничивается несколькими секундами, в отличие от многочасового воздействия на продукт гамма-излучением.

Кратковременность воздействия ускоренных электронов снижает возможные эффекты окисления, сводя к минимуму нарушения в структуре как продукта, так и упаковочного материала. Cо временем и углубленным развитием технологий стоимость ЭЛ-стерилизации понизилась до вполне приемлемого уровня, вызвав интерес со стороны пищевой и упаковочной индустрии. Стоимость стерилизации ионизирующим излучением в 4-5 раз ниже, чем стоимость стерилизации термическим или газовым способом.

Радиационная стерилизация медицинских изделий является одним из наиболее развитых радиационно-технологических процессов внедренных в нашей стране и во многих странах.

Благодаря высокой проникающей способности возможно стерилизовать медицинскую продукцию в упакованном и готовом к выпуску виде, что дает дополнительные преимущества способу радиационной стерилизации по сравнению с традиционными способами.

В последние годы наблюдается повышение спроса на стерильные изделия медицинского назначения однократного применения. В настоящее время одноразовая медицинская одежда, белье и одноразовые медицинские средства индивидуальной защиты находят все более широкое применение в лечебно-профилактических учреждениях РФ. Ассортимент изделий медицинского назначения, подвергаемых радиационной стерилизации, составляет более 254 видов изделий.

Практически используется технология радиационной стерилизации следующих медицинских изделий:

  • Медицинские изделия однократного применения, контактирующие с кровью и лимфой (шприцы инъекционные однократного применения, иглы инъекционные однократного применения и т.д.);
  • Медицинские изделия, постоянно или длительно контактирующие с внутренней средой организма (имплантируемые катетеры, датчики, контрацептивы, эндопротезы ортопедического назначения);
  • Медицинские изделия, контактирующие с раневой поверхностью (перевязочные, противоожоговые, дренажные, впитывающие материалы, шовный хирургический материал и т.д.);
  • Изделия, длительно контактирующие со слизистыми оболочками и кожей (гинекологические, урологические, стоматологические инструменты);
  • Медицинская одежда, белье и одноразовые медицинские средства индивидуальной защиты.