Встречное фрезерование схема фрезерования. Попутное и встречное фрезерование – какая методика лучше? Встречное фрезерование и его особенности

При цилиндрическом фрезеровании ось фрезы параллельна обрабатываемой поверхности; работа осуществляется зубьями, расположенными на цилиндрической поверхности фрезы. При торцовом фрезеровании ось фрезы перпендикулярна к обработанной поверхности; в работе участвуют зубья, расположенные как на торцовой, так и на цилиндрической поверхности фрезы. Торцовое и цилиндрическое фрезерование можно выполнять двумя способами: встречным фрезерованием, когда направление подачи s противоположно направлению вращения фрезы (рис. 8.10, а), и попутным фрезерованием (рис. 8.10, б), когда направление подачи s совпадает с направлением вращения фрезы.
При встречном фрезеровании нагрузка на зуб фрезы увеличивается постепенно, резание начинается в точке 1 и заканчивается в точке 2 с наибольшей толщиной атах срезаемого слоя (рис. 8.10, а).
При попутном фрезеровании зуб начинает резание со слоя наибольшей толщины, поэтому в момент входа зуба в контакт с обрабатываемой заготовкой наблюдается явление удара. При встречном фрезеровании процесс резания происходит спокойнее, так как толщина срезанного слоя возрастает плавно и, следовательно, нагрузка на станок возрастает постепенно. Попутное фрезерование следует выполнять на станках, имеющих достаточную жесткость и виброустойчивость, и главным образом при отсутствии зазора в сопряжении ходовой винт-гайка продольной подачи стола.
При обработке заготовок с черной поверхностью (по корке) попутное фрезерование применять не следует, так как при врезании зуба фрезы в твердую корку происходит преждевременный износ и выход из строя фрезы. При фрезеровании заготовок с предварительно обработанными поверхностями попутное фрезерование предпочтительнее встречного, что объясняется следующим. При попутном фрезеровании заготовка прижимается к столу, а стол к направляющим, благодаря чему повышаются жесткость

Инструмента и качество обработанной поверхности. При встречном же фрезеровании фреза стремится оторвать заготовку от поверхности стола.
Как при попутном, так и при встречном фрезеровании можно работать при движении стола в обоих направлениях, что позволяет выполнять черновое и чистовое фрезерование за одну операцию.

71. Торцевое фрезерование .

Торцевое фрезерование выполняется исключительно при помощи торцевых фрез. Для снятия припуска к вращательному движению фрезы также добавляется поступательное движение. Таким образом, в основном осуществляется фрезеровка металла на горизонтально-фрезерных станках.

Торцевые фрезы предназначены для обработки плоскостей на вертикально- и горизонтально- фрезерных станках. Торцевые фрезы имеют зубья, расположенные на цилиндрической пов-ти и на торце. Делятся на: насадные(с мелкими и крупными зубьями) и на насадные со вставленными ножами. «+» более жесткое крепление на оправке или шпинделе, более плавная работа из-за большого кол-ва одновременно работающих зубьев.

Торцовые фрезы

Торцовые фрезы широко применяются при обработке плоскостей на вертикально-фрезерных станках. Ось их устанавливается перпендикулярно обработанной плоскости детали. В отличие от цилиндрических фрез, где все точки режущих кромок являются профилирующими и формируют обработанную поверхность, у торцовых фрез только вершины режущих кромок зубьев являются профилирующими. Торцовые режущие кромки являются вспомогательными. Главную работу резания выполняют боковые режущие кромки, расположенные на наружной поверхности.

Так как на каждом зубе только вершинные зоны режущих кромок являются профилирующими, формы режущих кромок торцовой фрезы, предназначенной для обработки плоской поверхности, могут быть самыми разнообразными. В практике находят применение торцовые фрезы с режущими кромками в форме ломаной линии либо окружности. Причем углы в плане Ф на торцовых фрезах могут меняться в широких пределах. Наиболее часто угол в плане Ф на торцовых фрезах принимается равным 90° или 45-60°. С точки зрения стойкости фрезы его целесообразно выбирать наименьшей величины, обеспечивающей достаточную виброустойчивость процесса резания и заданную точность обработки детали.

Торцовые фрезы обеспечивают плавную работу даже при небольшой величине припуска, так как угол контакта с заготовкой у торцовых фрез не зависит от величины припуска и определяется шириной фрезерования и диаметром фрезы. Торцовая фреза может быть более массивной и жесткой, по сравнению с цилиндрическими фрезами, что дает возможность удобно размещать и надежно закреплять режущие элементы и оснащать их твердыми сплавами. Торцовое фрезерование обеспечивает обычно большую производительность, чем цилиндрическое. Поэтому в настоящее время большинство работ по фрезерованию плоскостей выполняется торцовыми фрезами.

Фрезерование это есть ни что иное как механическая обработка разного рода материалов методом резания. Фрезерование выполняется для того, чтобы получить деталь, которая будет иметь необходимую шероховатость, форму или размер в обработанном виде.

Многолезвийный инструмент, который устанавливается на станке, в процессе фрезерования обычно совершает движение вращения, а заготовка, обрабатываемая с помощью этого режущего инструмента, движется в поступательном режиме.

Сам процесс резания при фрезеровке будет характеризоваться сменяющими друг друга холостыми и рабочими циклами зубьев фрез. Кроме того, могут меняться температурные колебания нагревания зубьев, сменой нагрузки, подаваемой на каждый зуб фрезы или сменой толщины снимаемой стружки.

Во время фрезеровки резание детали происходит исключительно на части дуги окружности и только до тех пор, пока зубья находятся в контакте с материалом, который обрабатывается. После этого следует холостой ход.

В процессе фрезерования каждый зуб фрезы должен преодолеть сопротивление своему действию со стороны обрабатываемого материала и силы трения, которые будут действовать на поверхности зубьев фрезы. Как правило, во время резки с заготовкой контактирует не один зуб, а сразу несколько, поэтому станку приходится преодолевать суммарное противодействие. В это время действует суммарная сила резания, она складывается из всех сил, которые действуют на зубья. Схема, по которой будут действовать силы резания во время фрезерования, будет зависеть от способа фрезеровки и типа рабочей фрезы.

Фрезерование, как радиальное, выполняемое торцевой фрезой , так и тангенциальное, с помощью цилиндрической фрезы, может быть выполнено двумя способами. Один из них – встречное фрезерование или против подачи. В этом случае направление движения материала будет противоположно направлению движения фрезы. Второй тип называется попутным фрезерованием или по подаче. В этом случае вращение самой фрезы и подачи будут совпадать.

Если фрезерование встречное , то толщина этого среза будет меняться от нуля, который можно заметить на входе зуба и до максимального значения. Его можно будет зарегистрировать при выходе зуба из контакта с заготовкой, которую он обрабатывает.

Если фрезерование попутное , то процесс резки будет наоборот происходить от максимума до нулевого значения.

Попутное фрезерование начинается с удара, происходящего в момент, когда зуб входит в контакт с обрабатываемой заготовкой, так как толщина среза в данном случае имеет максимальное значение. По этой причине попутную фрезеровку допускается производить только на станках, которые обладают достаточным уровнем жесткости. Кроме того, обязательно контролировать, чтобы не было зазора в сопряжении ходовой винт гайка между поперечной и продольной подачей фрезерного стола.

Если смотреть в целом, то попутная фрезеровка будет более выгодной при чистовых работах, когда корку, образующуюся на поверхности материала, уже сняли, а глубина срезаемого слоя не большая.

Процесс обработки при встречном фрезеровании характеризуется более спокойным резанием, так как толщина удаляемого материала нарастает плавно, а нагрузка на станок увеличивается постепенно. Встречная фрезеровка значительно полезнее при черновой обработке материала, при наличии корки или окалины (поковки).

К станкам с числовым программным управлением предъявляются особые повышенные требования по люфтам механизмов измеряемых в сотых долях миллиметра, по этому попутному фрезерованию здесь отдаётся предпочтение, что не всегда реализуемо на обычных станках.

При нарезании цилиндрических зубчатых колес на зубофрезерном станке осуществляются следующие рабочие движения:

  • вращение фрезы - главное движение при резании
  • вращение стола с заготовкой, согласованное с вращением фрезы,- обкатка
  • перемещение суппорта с фрезой параллельно оси стола - движение подачи

Суппорт при фрезеровании может перемещаться или сверху вниз или снизу вверх.


рис. 38 а, в, г. Встречное фрезерование

При перемещении суппорта сверху вниз осуществляется встречное фрезерование. В этом случае при вращении фрезы зубья ее движутся относительно заготовки в направлении от торца с нарезанной частью зубьев к торцу с ненарезанной частью, т. е. навстречу срезаемому слою металла (рис. 38, а).

При перемещении суппорта снизу вверх происходит попутное фрезерование. В этом случае зубья фрезы движутся относительно заготовки в направлении от торца с ненарезанной частью зубьев к торцу с нарезанной, т. е. попутно со срезаемым слоем металла (рис. 38, б).

Вследствие неодинакового направления силы при встречном и попутном фрезеровании она по-разному влияет на процесс резания.

Преимущества

  • Нагрузка на станок более плавная и не зависимо какую поверхность имеет заготовка процесс резания идет мягко и равномерно
  • Упрочнение обработанной поверхности за счет деформации металла

Недостатки встречного фрезерования

  • Силы резания направлены на то, чтобы оторвать заготовку от приспособления и этот факт требует надежное ее крепление в базовом приспособлении
  • Значительный и быстрый износ режущего инструмента, что в свою очередь не позволяет работать с применением высоких режимов резания
  • Плохое удаление стружки. Она вылетает перед фрезой и может попасть в зону резания, что приведет к царапинам по обработанной поверхности

рис. 38 б, д, е. Попутное фрезерование


Силу давления на зубья фрезы R, перпендикулярную их поверхности, можно разложить по двум направлениям: на горизонтальную силу R Г и вертикальную R В.

При встречном фрезеровании горизонтальная сила действует на фрезу в направлении от ее оси (рис. 38, в) и отжимает суппорт от направляющих стойки, вследствие чего снижается устойчивость фрезы.

При попутном фрезеровании горизонтальная сила действует на фрезу по направлению к ее оси и прижимает суппорт к направляющим, увеличивая устойчивость фрезы, что способствует повышению точности обработки и позволяет работать на повышенных скоростях.

При встречном фрезеровании винт, перемещающий суппорт вниз, нажимает на верхние стороны витков гайки суппорта (рис. 38, г), а вертикальная сила направлена против направления подачи и прижимает витки гайки к виткам винта; этим устраняются зазоры между ними и фреза работает с равномерной подачей без вибрации.

При попутном фрезеровании винт, перемещающий суппорт вверх, нажимает на нижние стороны витков гайки (рис. 38, е), а направление вертикальной силы совпадает с направлением подачи. В момент врезания зубьев фрезы вертикальная сила увеличивается (R В > S) и отжимает витки гайки от витков винта за счет зазора между ними; происходит колебание суппорта, создающее неравномерную подачу, вследствие чего возникают вибрации. Для устранения отжима гайки в механизме перемещения суппорта применяются устройства, прижимающие гайку к винту (компенсирующие гайки, противовесы, гидравлические системы).

Если станок снабжен компенсирующим устройством, то попутное фрезерование имеет преимущество перед встречным, так как обеспечивает более высокую чистоту нарезаемых зубьев и позволяет работать на повышенных скоростях.

Преимущества попутного фрезерования:

  • Благодаря тому, что силы резания которые возникают при попутном фрезеровании направлены в направлении заготовки ее прижимает к зажимному приспособлению и по этому нет необходимости применять хитроумные зажимные устройства и лишать заготовку всех степеней свободы.
  • Стойкость фрезы гораздо выше чем при встречном фрезеровании так как износ зубьев инструмента по задним поверхностям менее значительный и идет равномерно
  • Качество поверхностей имеет хорошую шероховатость за счет плавной деформации снимаемого припуска металла
  • Удобное направление схода стружки. Она остается позади режущего инструмента и легко удаляется

Недостатки попутного фрезерования:

  • Наверное самый основной недостаток это невозможность использования данного способа при обработке заготовок с грубыми необработанными поверхностями (поковки, литье, штамповки). Это связано с тем, что различные твердые включения которые содержаться в корке могут сильно износить инструмент или даже привести к его поломке.
  • Так как зубья фрезы работают при ударной нагрузке то необходимо, чтобы приспособление было жестко и надежно закреплено на станке. Да и сам станок должен быть достаточно жестким.
  • В механизмах перемещения стола должны отсутствовать зазоры для исключения появления вибраций.

  • а - однопроходный цикл с попутной подачей
  • б - однопроходный цикл со встречной подачей
  • в - однопроходный цикл с радиальным врезанием и попутной подачей
  • г - двухпроходный цикл с попутной подачей
  • д - двухпроходный цикл со встречной подачей
  • е - двухпроходный цикл с попутной и встречной подачами

Малахов Я.А. Зубообрабатывающие и резьбофрезерные станки и их наладка. ВШ, Москва, 1972. Андрей Белазор.

Рисунок 101

При встречном фрезеровании направление подачи заготовки не совпадает с главным движением. При попутном – совпадает. Преимущества встречного фрезерования:

При наличии твердой корки на заготовке зуб фрезы подрезает ее снизу, а не ударяется и не выкрашивается;

Не наблюдается подхватывания заготовки силами резания, при котором резко увеличивается S z на величину зазора в паре винт-гайка цепи подач, поэтому можно работать даже на изношенном станке.

Недостатки:

Зуб фрезы не сразу врезается, а проскальзывает (а=0) поэтому наклепывает поверхность резания и сам изнашивается;

Стружка остается на передней поверхности и при врезании выкрашивает зуб фрезы.

При попутном фрезеровании все наоборот, поэтому на новом станке лучше применять метод попутного фрезерования, так как качество обработки выше.

5.8 Протягивание

Протягиваются поверхности различной конфигурации, как внутренние, так и наружные.

Скорость резания при протягивании – 2-15 м/мин.

Точность обработки 6-9 квалитеты, шероховатость Ra 0,63…2,5 мкм.

5.8.1 Конструкция протяжки

Если длина протяжки не превышает 15 диаметров и протяжка работает на сжатие, то она называется прошивкой.

Р
исунок 102

Р
исунок 103

1 – хвостовик;

2 – шейка;

4 – режущая часть;

5 – калибрующая часть;

6 – задний конец протяжки.

Рабочая часть протяжки изготавливается из сталей Р9, Р18, Р9Ф5, ХВГ (наименьшая способность деформироваться).

5
.8.2 Геометрические параметры

Рисунок 104

5.8.3 Элементы режима резания

V p – вдоль оси протяжки,

S z – подача на зуб, разность высоты соседних зубьев режущей части,

a – равняется подаче на зуб S z ,

b - зависит от формы и конструкции протяжки, которая определяется обрабатываемой поверхностью,

,

.

На калибрующей части подъёма нет для улучшения класса шероховатости.

α=2…4 0 на режущей части протяжки, α=1…2 0 на калибрующей части.

5.8.4 Схемы протягивания

    Профильная.

Рисунок 105

Получается наилучшее качество и точность обработки. Применяется редко из-за сложности изготовления зубьев протяжки.

    Генераторная.

Рисунок 106

Точность и класс шероховатости ниже. Метод применяется широко, когда нет высоких требований к детали.

    Прогрессивная (групповая).

Осуществляется по генераторной или профильной схеме.

Припуск между одинаковыми по высоте зубьями в группе разделяется по ширине. Снижаются силы резания, увеличивается стойкость.

Рисунок 107

5.8.5 Износ и стойкость протяжек

Износ по передней поверхности незначителен. Преимущественно изнашивается задняя поверхность протяжек. Для протяжки назначают технологический критерий изнашивания, так как протяжка является размерным инструментом. Величина изнашивания – до 0,2-0,3 мм, затем протяжка перетачивается. Температура резания является основным фактором, влияющим на изнашивание, так как при холостом ходе протяжка полностью охлаждается и скорости резания низкие. Очень мала толщина срезаемого слоя. Это основной фактор изнашивания.

S
z =0,02-0,2 мкм.

Рисунок 108

Процесс резания возможен при a>ρ.

Стойкость от 120 до 600 мин.

ρ – радиус округления режущей кромки.

Протяжка применяется только в крупносерийном и массовом производстве и как исключение в ремонтных цехах.

    Ну зачем так жестко.. у старика же пенсии на валидол не хватит) Профессора Стивена Майлса в Оксфорде нет, это художник по костюмам в Голливуде. Виктор, выдыхайте) Кстати, на выходных посчастливилось побывать в компании с известным медиумом, участником 9 сезона "Битвы экстрасенсов". По моей просьбе был вызван дух профессора Бочарова. Тот поведал, что никакого Турту с его открытием современности не знает и на форумах ничего не писал (?).

    @lineyka2 То что согласен, это хорошо и это надо исправлять. Для начала включить воображение и попытаться построить всё однородно - если это листовой материал, то не стоит без надобности вкраплять туда бобышки (хотя это дело вкуса) Добиваться полной определённости эскизов Hide (чтобы все объекты эскиза были черненькими, а не кое-как) Во многих случаях для сопряжений в сборке удобно использовать базовую геометрию и в данной конструкции она явно отслеживается - центр вспомогательной окружности. (вот относительно этого центра и надо всё строить) Стараться без лишней надобности не использовать дополнительные плоскости. Для построения базовой кромки в листовом материале достаточно одного контура и не обязательно он должен быть замкнут - это я по поводу детали "панель". Для лучшего восприятия своего будущего творения можно все детали строить в сборке, опять же используя выбранную базовую геометрию. И т.д. и т.п. Учите матчасть. PS Пока писал сей опус меня уже опередили но суть та же самая

    @lineyka2 Начни с простого постулата - если деталь или сборка имеет хоть малейшую симметрию - располагай ее или детали так, чтобы базовые плоскости были в середине детали. Это сильно упрощает работу. Даже сопряжения в сборках можно делать по базовым плоскостям, если соблюдать этот постулат. Второй постулат - лучше много простых корректных полностью определенных эскизов и операций, чем мало сложных и витиеватых. Третий и главный постулат - почитай мануал и пройди упражнения Солидворкс и проектирование твое станет проще и понятнее. Мир САПРу твоему!

    Т.е.Ввы согласны с п.3 ст 1358 Полезная модель признается использованной в продукте, если продукт содержит каждый признак полезной модели, приведенный в независимом пункте содержащейся в патенте формулы полезной модели. В п.3 ст 1358 речь идёт о независимом пункте формулы и о КАЖДОМ его признаке. А независимый пункт формулы может включать в себя как признаки общие с прототипом, так и отличительные (что мы и видим в большинстве патентов, за исключением так называемых пионерских изобретений, формулы которых состоят только из отличительных признаков). Поэтому если хоть один признак из независимого пункта формулы не использован, то патент не использован в объекте.

    Здравствуйте. Уверен что где то ответ на мой вопрос уже есть но найти его у меня не получилось. Требуется создать свою деталь в toolbox. Например вот такую http://docs.cntd.ru/document/gost-20862-81. Сделать её необходимо именно в таком виде как в ГОСТе (геометрия, материал, покрытие со всеми возможными вариациями). Но вот чёткого описания как это сделать я не нахожу. Помогите пожалуйста.